Math, asked by Pyarsananagalaxmi, 15 hours ago

fine the equation of the pair of transverse common tangents of x²+y²-4x-20y+28=0,x²+y²+4x-6y+4=0.​

Answers

Answered by tambebushra0710
1

Answer:

Step-by-step explanation:

x  

2

+y  

2

−4x−10y+28=0                                   x  

2

+y  

2

+4x−6y+4=0  

centre c  

1

=(2,5)                                                      centre c  

2

=(−2,3)

r  

1

=  

4+25−28

                                                  r  

2

=  

4+9−4

 

r  

1

=1                                                                       r  

2

=3

Distance between c  

1

 and c  

2

=  

(2+2)  

2

+(5−3)  

2

 

=  

20

 

∴c  

1

c  

2

>r  

1

+r  2  [  2 >4]

∴ Point P divides c  

1  c  2 in the ratio 1:3

 

P = [2+  4 (−2−2)  ,5+4 (3−5] ]  

 

P = (1,  2 ,9 )

 

Eqn of tangent with slope m is  

y−  2 9

=m(x−1)   ⇒ 2mx−2y+9−2m=0

 

The above line is tangent to circle  x  

2 +y  2 −4x−10y+28=0

Radius = bot  distance from centre (2,5) to line

 

1 =4m +4

 

2m(2)−2(5)+9−2m

   

 ⇒  1 =  

 

4m  

2

+4

 

2m−1

 

 

4m  

2

+4=4m  

2

+1−4m

4m+3=0 ⇒  

m=−  

4

3

 

 

Since we have two tangents passing from point (1,  

2

9

)

But  m  

2

  term is eliminated      

∴ slope of other line is ∞

Eqn. of tangent having slope −  

4

3

 is

y−  

2

9

=−  

4

3

(x−1) ⇒  

3x+4y−21=0

 

eqn. of tangent having slope ∞ &  passing though (1,  

2

9

) is

 

x=1

 

drop thanks and mark as brainlistt

Similar questions