Math, asked by parthapegu78, 1 month ago

fine the least number which must be added to the following numbers to make them perfect squares 4515600​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given number is 4515600.

Since, we have to find the least number that must be added to 4515600 to make it a perfect square.

So, we use long division to find the remainder that should be added to the given number to make it a perfect square.

Thus,

\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{}}}&{\underline{\sf{\:\:2125 \:\:}}}\\ {\underline{\sf{2}}}& {\sf{\:\:4515600 \:\:}} \\{\sf{}}& \underline{\sf{\:\: \: 4 \:  \:  \:  \:  \:  \:  \:\:}} \\ {\underline{\sf{41}}}& {\sf{\:\: \: \: \: 051\:  \:  \:  \:\:\:}} \\{\sf{}}& \underline{\sf{\:\: \: \: \: 41 \:    \:  \: \:\:}} \\ {\underline{\sf{422}}}& {\sf{\:\: \:  \: 1056  \:\:}} \\{\sf{}}& \underline{\sf{\: \:  \:  \: \:844\:\:}} \\ {\underline{\sf{4245}}}& {\sf{\:\: \:  \: \:  \: 21200\:\:}} \\{\sf{}}& \underline{\sf{\:\: \:  \:  \:  \:  \: 21225\:\:}} \\ {\underline{\sf{}}}& {\sf{\: \:  \:  \:  \:  \:  \:   \:25\:\:}}{\sf{}}&{\sf{\:\:\:\:}}\end{array}\end{gathered}

So, it means 25 must be added to 361298 to make it a perfect square.

Thus, Required number is 4515600 + 25 = 4515625.

So,

\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{}}}&{\underline{\sf{\:\:2125 \:\:}}}\\ {\underline{\sf{2}}}& {\sf{\:\:4515625 \:\:}} \\{\sf{}}& \underline{\sf{\:\: \: 4 \:  \:  \:  \:  \:  \:  \:\:}} \\ {\underline{\sf{41}}}& {\sf{\:\: \: \: \: 051\:  \:  \:  \:\:\:}} \\{\sf{}}& \underline{\sf{\:\: \: \: \: 41 \:    \:  \: \:\:}} \\ {\underline{\sf{422}}}& {\sf{\:\: \:  \: 1056  \:\:}} \\{\sf{}}& \underline{\sf{\: \:  \:  \: \:844\:\:}} \\ {\underline{\sf{4245}}}& {\sf{\:\: \:  \: \:  \: 21225\:\:}} \\{\sf{}}& \underline{\sf{\:\: \:  \:  \:  \:  \: 21225\:\:}} \\ {\underline{\sf{}}}& {\sf{\: \:  \:  \:  \:  \:  \:   \:00\:\:}}{\sf{}}&{\sf{\:\:\:\:}}\end{array}\end{gathered}

Thus,

\rm \implies\:\boxed{ \tt{ \:  \sqrt{4515625} = 2125 \: }}

Similar questions