Math, asked by shwetasharma40515, 10 months ago

fine the zeros of the polynomial p(x) =x^3-5x^2 -2x+24 if the product of its tow Zeros is 12​

Answers

Answered by Anonymous
8

\bf{\Huge{\underline{\boxed{\bf{\red{ANSWER\::}}}}}}

\bf{\Large{\underline{\bf{Given\::}}}}

The cubic polynomial p(x) = x³ - 5x² - 2x + 24. If the product of its two zeroes is 12.

\bf{\Large{\underline{\bf{To\:find\::}}}}

All the zeroes of the polynomial.

\bf{\Large{\underline{\bf{\blue{Explanation\::}}}}}

Let α , β and γ be the three zeroes.

We know that product of the zeroes in cubic polynomial:

\longmapsto\sf{\alpha \beta \gamma\:=\:-\frac{Constant\:term}{Coefficient\:of\:x^{3} } =-\frac{d}{a} }

According to the question:

\leadsto\sf{12\gamma=-\frac{24}{1} }

\leadsto\sf{12\gamma=-24}

\leadsto\sf{\gamma=\cancel{\frac{-24}{12} }}

\leadsto\sf{\orange{\gamma\:=\:-2}}

We know that sum of the zeroes in cubic polynomial:

\longmapsto\sf{\alpha +\beta +\gamma\:=\:-\frac{Coefficient\:of\:x²}{Coefficient\:of\:x^{3} } =-\frac{b}{a} }

\leadsto\sf{\alpha +\beta +\gamma\:=\:-\frac{b}{a} }

\leadsto\sf{\alpha +\beta +(-2)\:=\:-\frac{-5}{1} }

\leadsto\sf{\alpha +\beta -2=5}

\leadsto\sf{\alpha +\beta =5+2}

\leadsto\sf{\alpha +\beta\: =\:7.......................(1)}

We know that this formula:

\mapsto\sf{\pink{(\alpha -\beta )^{2} =(\alpha +\beta )^{2} -4\alpha \beta }}

Putting the value of equation(1) & product of two zeroes above that formula:

\leadsto\sf{(\alpha -\beta )^{2} =\:(7)^{2} -4(12)}

\leadsto\sf{(\alpha -\beta )^{2} =\:49 \:-\:48}

\leadsto\sf{(\alpha -\beta )^{2} =1}

\leadsto\sf{\alpha -\beta \:=\:√1}

\leadsto\sf{\alpha -\beta \:=\:±1................................(2)}

  • \bf{\large{\underline{\sf{For\:\alpha\: -\:\beta\: =\:1}}}}

\bf{\Large{\underline{\rm{Adding\:equation\:(1)\:&\:equation(2)\:,we\:get\::}}}}}

\mapsto\sf{\alpha \cancel{+\beta} +\alpha \cancel{-\beta} =7+1}

\mapsto\sf{2\alpha =8}

\mapsto\sf{\alpha =\cancel{\frac{8}{2} }}

\mapsto\sf{\orange{\alpha\: =\:4}}

Putting the value of α in equation (1), we get;

\mapsto\sf{4 +\beta =7}

\mapsto\sf{\beta =7-4}

\mapsto\sf{\orange{\beta\: =\:3}}

__________________________________________________

  • \bf{\large{\underline{\sf{For\:\alpha\: -\:\beta\: =\:-1}}}}

\bf{\Large{\underline{\rm{Adding\:equation\:(1)\:&\:equation(2)\:,we\:get\::}}}}}

\mapsto\sf{\alpha \cancel{+\beta} +\alpha \cancel{-\beta} =7-1}

\mapsto\sf{2\alpha =6}

\mapsto\sf{\alpha =\cancel{\frac{6}{2} }}

\mapsto\sf{\orange{\alpha\: =\:3}}

Putting the value of α in equation (1), we get;

\mapsto\sf{3 +\beta =7}

\mapsto\sf{\beta =7-3}

\mapsto\sf{\orange{\beta\: =\:4}}

Thus,

\bf{\Large{\boxed{\sf{\purple{The\:three\:zeroes\:are\:3\:,\:4\:&\:-2}}}}}}}

Answered by nilesh102
0

Solution:-

=> The polynomial

x³-5x²-2x+24

=> and compare with

ax³+bx²+cx+d

=> α+β+y= -b/a =5

=> αβy = -d/a = -24

12y = -24....(as given the product

of two zeros..

i.e. αβ=12

y= -2.

=> α+β+y=5

=> α+β-2=5

=> α+β =7. .................(1)

=> (α+β)²=7²

=> (α-β)²+4αβ=49

=> (α-β)²+4*12=49

=> (α-β)²+48= 49

=> (α-β)² =1

=> α-β = √1

=> α-β=1. ....................(2)

• subtracting (2) From (1)

=> α+β-(α-β)=7-1

=> α+β-α+β=6

=> 2β =6

=> β=3

• putting the value of β in the (2) eq

=> α-3=1

=> α=4

=> α=4,β=3,y= -2

i hope it helps you.

Similar questions