Math, asked by anshupal1662, 3 months ago

fined the coodintas of centre
and radius of the circle
x² + y² - 6x - 4y = 25​

Answers

Answered by Asterinn
7

Equation of circle with center (h,k) and radius r :-

  \boxed{  \rm{(x - h)}^{2}  + {(y - k)}^{2} =  {r}^{2} }....(1)

Now we have to find co-ordinates of centre

and radius of the circle :-

 \rm \longrightarrow {x}^{2}  +  {y}^{2}  - 6x - 4y = 25

To find the co-ordinates of centre and radius of the given circle we should transform the given equation in the form of equation (1).

 \rm \longrightarrow {x}^{2}  - 6x +  {y}^{2}  - 4y = 25 \\ \\   \\  \rm \longrightarrow {x}^{2}  - 2(3)x +  {(3)}^{2}  -  {(3)}^{2}   + {y}^{2}  - 2(2)y +  {(2)}^{2}  -  {(2)}^{2}  = 25\\ \\   \\  \rm \longrightarrow {(x - 3)}^{2}   -  {(3)}^{2}   + {(y - 2)}^{2}  -  {(2)}^{2}  = 25 \\  \\  \\ \rm \longrightarrow {(x - 3)}^{2}   - 9 + {(y - 2)}^{2}  -  4 = 25\\  \\  \\ \rm \longrightarrow {(x - 3)}^{2}    + {(y - 2)}^{2}  -  13 = 25\\  \\  \\ \rm \longrightarrow {(x - 3)}^{2}    + {(y - 2)}^{2}  -  13 = 25\\  \\  \\ \rm \longrightarrow {(x - 3)}^{2}    + {(y - 2)}^{2}   = 25 + 13\\  \\  \\ \rm \longrightarrow {(x - 3)}^{2}    + {(y - 2)}^{2}   = 38\\  \\  \\ \rm \longrightarrow {(x - 3)}^{2}    + {(y - 2)}^{2}   =  {( \sqrt{38} )}^{2}

➡️Co-ordinates of centre :-. (3,2)

➡️ Radius = √(38) units


IdyllicAurora: Good !
Asterinn: Thank you!
anshupal1662: nice
Asterinn: Thank you!
Similar questions