Math, asked by apurbabadaik132, 3 months ago

Finf x',if 3x2+4x+4,2x2+3x+3 and 3x+8 are term of ap where x is a natural number

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Let assume that

\rm :\longmapsto\:\: a_1 =  {3x}^{2} + 4x + 4

\rm :\longmapsto\:\: a_2 =  {2x}^{2} + 3x + 3

\rm :\longmapsto\:\: a_3 =  3x + 8

Since, it is given that

\rm :\longmapsto\:a_1, \: a_2, \: a_3 \: are \: in \: AP

\rm :\implies\:a_2 - a_1 = a_3 - a_2

\rm :\longmapsto\: {2x}^{2} + 3x + 3 -  {3x}^{2} - 4x - 4 = 3x + 8 -  {2x}^{2} - 3x - 3

\rm :\longmapsto\: -  {x}^{2} - x - 1 =  -  {2x}^{2} + 5

\rm :\longmapsto\: {x}^{2} - x - 6 = 0

\rm :\longmapsto\: {x}^{2} - 3x + 2x - 6 = 0

\rm :\longmapsto\:x(x  - 3) + 2(x - 3) = 0

\rm :\longmapsto\:(x - 3)(x + 2) = 0

\bf\implies \:x = 3 \: or   \: x =  - 2 \: (rejected \: as \: x \in \: natural \: number)

\bf\implies \:x = 3

Additional Information :-

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

↝ Sum of n term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} \bigg(2\:a\:+\:(n\:-\:1)\:d \bigg)}}}}}} \\ \end{gathered}

Or

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} \bigg(\:a\:+\:a_n\bigg)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • aₙ is the nᵗʰ term.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

Similar questions