Math, asked by sriyapatro2006, 4 months ago

fins the value of n if 2^n+1 5^n=200​

Answers

Answered by Anonymous
27

{\large{\underbrace{\underline{\bf{Question:-}}}}}  \\

Find the value of 'n' if 2^{n} + 5^{n} = 200.

{\large{\underbrace{\underline{\bf{Answer:-}}}}}  \\

2^{n} + 5^{n} = 200

[(2)(5)]^{n} = 200

10^{n} = 200

n = \frac{200}{10}

∴ n = 20

★ More to know about laws of exponents -

  • a^{m} ×a^{n} = a^{m + n}
  • (a^{m})^{n}  = a^{mn}
  • a^{0} = 1
  • a^{-n}  = an
  • (a^{m} b^{m}) = (ab)^{m}
  • (\frac{a}{b})^{x} =  \frac{a^{x} }{b^{x} }
  • a^{x} ÷ a^{y}  = a^{xy}

Hope this helps uh! ♡

Similar questions