Math, asked by Anonymous, 1 year ago

first and perfect answer will be given brainliest answer​

Attachments:

Answers

Answered by shadowsabers03
1

Given,

\displaystyle\longrightarrow\sf {A=\left [\begin {array}{ccc}1&-1&1\\&&\\2&1&-3\\&&\\1&1&1\end {array}\right]}

\displaystyle\longrightarrow\sf {10B=\left [\begin {array}{ccc}4&2&2\\&&\\-5&0&\alpha\\&&\\1&-2&3\end {array}\right]}

Given that B is the inverse of A, i.e.,

\displaystyle\longrightarrow\sf {AB=I}

On multiplying 10 on both sides,

\displaystyle\longrightarrow\sf {10AB=10I}

\displaystyle\longrightarrow\sf {A\cdot10B=10I}

\displaystyle\longrightarrow\sf {\left [\begin {array}{ccc}1&-1&1\\&&\\2&1&-3\\&&\\1&1&1\end {array}\right]\cdot\left [\begin {array}{ccc}4&2&2\\&&\\-5&0&\alpha\\&&\\1&-2&3\end {array}\right]=\left [\begin {array}{ccc}10&0&0\\&&\\0&10&0\\&&\\0&0&10\end {array}\right]}

So we can say that using first row of A and third column of B we obtain \displaystyle\sf {I_{13}=0,} i.e.,

\displaystyle\longrightarrow\sf {A_{11}\cdot(10B)_{13}+A_{12}\cdot(10B)_{23}+A_{13}\cdot (10B)_{33}=I_{13}}

\displaystyle\longrightarrow\sf {1\times2+(-1)\alpha+1\times3=0}

\displaystyle\longrightarrow\sf {2-\alpha+3=0}

\displaystyle\longrightarrow\sf {5-\alpha=0}

\displaystyle\longrightarrow\sf {\underline {\underline {\alpha=5}}}

Similar questions