Math, asked by shemesivan365, 9 months ago

First if u give me correct answer i will mark u as brainliest
Plsee
only if answer is given ​

Attachments:

Answers

Answered by BrainlyTornado
21

\rule{200}{2}

QUESTION:

\textsf{If $S_n$ denotes the sum of n terms of an AP}  \\ \textsf{whose common difference is d and first term is a} \\  \textsf{Find $S_n$ + 2 $S_{n - 1}$ + $S_{n - 1}$}.

\rule{200}{2}

ANSWER:

  • \textsf{$S_n$ + 2 $S_{n - 1}$ + $S_{n - 1}$} = a(4n - 4) + d(2n^2-2n+5)

\rule{200}{2}

GIVEN:

  • First term = a

  • Common difference = d

\rule{200}{2}

TO FIND:

  • \textsf{$S_n$ + 2 $S_{n - 1}$ + $S_{n - 1}$}.

\rule{200}{2}

TERMS USED:

  \boxed{ \bold{\large{S_n =  \frac{n}{2} (2a + (n - 1)d)}}}

2S_{n-1} =  2\bigg(\dfrac{n - 1}{2}  \bigg)( 2a + (n-1-1)d)

2S_{n-1} = (n - 1)(2a + (n-2)d)

S_{n-2} =  \bigg(\dfrac{n - 2}{2}  \bigg)2a + (n-2 - 1)d

S_{n-2} =  \dfrac{n - 2}{2}(2a + (n-3)d)

NOTE : REFER ATTACHMENT FOR CALCULATION.

\rule{200}{2}

Attachments:
Answered by sania200511
41

Answer:

Sn = (n/2)[ 2a + ( n -1) d]

then Sn - 2Sn-1 + Sn +  2

⇒ (n/2)[ 2a + ( n -1) d] - 2(n - 1)/2)[ 2a + ( n - 1 -1) d] + (n +2) / 2)[ 2a + ( n + 2 -1) d]

⇒ (1/2)[ 2an + n( n -1) d] + [ 4a(n - 1) + 2(n - 1)( n - 2) d] +[ 2a(n + 2)+ ( n + 1) (n + 2) d]

⇒ (1/2)[ 2a[ n - 2n + 2 + n + 2] + d [ n2 - n - 2n2 + 6n - 4 + n2 + 3n + 2] ]

⇒ (1/2)[ 2a(4) + d(8n - 2) ]

= [ 4a + (4n - 1)d]

Similar questions