Physics, asked by ayushprakash6546, 1 year ago

First law applied to a process and a cycle in thermodynamic system definition

Answers

Answered by himanshu7518
3
A thermodynamic cycle consists of a linked sequence of thermodynamic processes that involve transfer of heat and work into and out of the system, while varying pressure, temperature, and other state variables within the system, and that eventually returns the system to its initial state.[1] In the process of passing through a cycle, the working fluid (system) may convert heat from a warm source into useful work, and dispose of the remaining heat to a cold sink, thereby acting as a heat engine. Conversely, the cycle may be reversed and use work to move heat from a cold source and transfer it to a warm sink thereby acting as a heat pump. At every point in the cycle, the system is in thermodynamic equilibrium, so the cycle is reversible (its entropy change is zero, as entropy is a state function).

During a closed cycle, the system returns to its original thermodynamic state of temperature and pressure. Process quantities(or path quantities), such as heat and workare process dependent. For a cycle for which the system returns to its initial state the first law of thermodynamics applies:

{\displaystyle \Delta E=E_{out}-E_{in}=0}

The above states that there is no change of the energy of the system over the cycle. Einmight be the work and heat input during the cycle and Eout would be the work and heat output during the cycle. The first law of thermodynamics also dictates that the net heat input is equal to the net work output over a cycle (we account for heat, Qin, as positive and Qout as negative). The repeating nature of the process path allows for continuous operation, making the cycle an important concept in thermodynamics. Thermodynamic cycles are often represented mathematically as quasistatic processes in the modeling of the workings of an actual device.

Answered by Sonalibendre
0
thermodynamic system is a group of material and/or radiative contents. Its properties may be described by thermodynamic state variables such as temperature, entropy, internal energy, and pressure.

The simplest state of a thermodynamic system is a state of thermodynamic equilibrium, as opposed to a non-equilibrium state.

The system can be separated from its surrounding by a wall or without a wall.

When the state of its content varies in space, the system can be considered as many systems located next to each other, each being a different thermodynamical system.

A thermodynamic system is subject to external interventions called thermodynamic operations; these alter the system's walls or its surroundings; as a result, the system undergoes thermodynamic processesaccording to the principles of thermodynamics. (This account mainly refers to the simplest kind of thermodynamic system; compositions of simple systems may also be considered.)

The thermodynamic state of a thermodynamic system is its internal state as specified by its state variables. In addition to the state variables, a thermodynamic account also requires a special kind of quantity called a state function, which is a function of the defining state variables. For example, if the state variables are internal energy, volume and mole amounts, that special function is the entropy. These quantities are inter-related by one or more functional relationships called equations of state, and by the system's characteristic equation. Thermodynamics imposes restrictions on the possible equations of state and on the characteristic equation. The restrictions are imposed by the laws of thermodynamics.

According to the permeabilities of the walls of a system, transfers of energy and matter occur between it and its surroundings, which are assumed to be unchanging over time, until a state of thermodynamic equilibrium is attained. The only states considered in equilibrium thermodynamics are equilibrium states. Classical thermodynamics includes equilibrium thermodynamics. It also considers: (a) systems considered in terms of cyclic sequences of processes rather than of states of the system; such were historically important in the conceptual development of the subject; and (b) systems considered in terms of processes described by steady flows; such are important in engineering.

In 1824 Sadi Carnot described a thermodynamic system as the working substance (such as the volume of steam) of any heat engine under study. The very existence of such thermodynamic systems may be considered a fundamental postulate of equilibrium thermodynamics, though it is only rarely cited as a numbered law.[1][2][3]According to Bailyn, the commonly rehearsed statement of the zeroth law of thermodynamics is a consequence of this fundamental postulate.

Similar questions