Math, asked by stmjkliu, 9 months ago

first solve then verify the question
Dude this is the 6th time i am posting this questions no one is helping me kindly help me i am in huge trouble ​

Attachments:

Answers

Answered by Tomboyish44
5

Part 1:

(i) Solve 2x + 2 = 4.

⇒ 2x + 2 = 4

⇒ 2x = 4 - 2

⇒ 2x = 2

⇒ x = 1

∴ The value of x is 1.

Now, Let's verify it.

(By verifying we are basically substituting the value of x in 2x + 2 = 4, and see if the LHS = RHS)

⇒ 2x + 2 = 4

x = 1, therefore:

⇒ 2(1) + 2 = 4

⇒ 2 + 2 = 4

⇒ 4 = 4

⇒ LHS = RHS

Hence verified.

----------------------------------

Part 2:

(ii) Solve x + 4 + x - 2 = 0.

⇒ x + 4 + x - 2 = 0

⇒ 2x + 4 - 2 = 0

⇒ 2x + 2 = 0

⇒ 2x = -2

⇒ x = -2/2

⇒ x = -1

Verification.

⇒ x + 4 + x - 2 = 0

x = -1, therefore:

⇒ -1 + 4 + (-1) - 2 = 0

⇒ 3 + (-3) = 0

⇒ 3 - 3 = 0

⇒ 0 = 0

⇒ LHS = RHS

Hence verified.

----------------------------------

Part 3:

(iii) Solve x ÷ 6 = 3

⇒ x ÷ 6 = 3

⇒ x = 3 × 6

⇒ x = 18

Verification.

⇒ x ÷ 6 = 3

x = 18, therefore:

⇒ 18 ÷ 6 = 3

⇒ 3 = 3

⇒ LHS = RHS.

Hence verified.

----------------------------------

Part 4:

\sf (iv) \ Solve \ \ \dfrac{3x - 3}{2x + 4} = 3

\sf \Longrightarrow \dfrac{3x - 3}{2x + 4} = 3

Transposing (2x + 4) to the RHS we get:

⇒ 3x - 3 = 3(2x + 4)

⇒ 3x - 3 = 6x + 12

⇒ 3x - 6x = 12 + 3

⇒ -3x = 15

⇒ x = 15/-3

⇒ x = -5

Verification:

\sf \Longrightarrow \dfrac{3x - 3}{2x + 4} = 3

x = -5, therefore:

\sf \Longrightarrow \dfrac{3(-5) - 3}{2(-5) + 4} = 3

\sf \Longrightarrow \dfrac{-15 - 3}{-10 + 4} = 3

\sf \Longrightarrow \dfrac{-18}{-6} = 3

We know that -6 × 3 = -18.

\sf \Longrightarrow 3 = 3

⇒ LHS = RHS

Hence Verified.

----------------------------------

Part 5:

(v) Solve 0.9x - 3 = 6

⇒ 0.9x - 3 = 6

⇒ 0.9x = 6 + 3

⇒ 0.9x = 9

Multiplying both sides by 10 we get:

⇒ 9x = 90

⇒ x = 90/9

⇒ x = 10

Verification:

⇒ 0.9x - 3 = 6

We know that x = 10, therefore:

⇒ 0.9(10) - 3 = 6

⇒ 9 - 3 = 6

⇒ 6 = 6

⇒ LHS = RHS

Hence Verified.

----------------------------------

Similar questions