Math, asked by laxi4, 8 months ago

first term of ap is 5 and last term is 45 and the sum is 400 then dind number of terms and common difference​

Answers

Answered by Sneha110061
1

Hey mate.

Here's your answer in the given attachment.

Attachments:
Answered by Anonymous
5

Step-by-step explanation:

\bf\large\underline\purple{Given:-}

 \displaystyle \sf \bigstar \:  \: a1 = 5 \: \:  \:   \:  \:  \:  \\  \\  \displaystyle \sf \bigstar a(n) = 45 \:  \:  \\  \\  \displaystyle \sf \bigstar s(n) = 400

__________________________________________________

\bf\large\underline\purple{Formulas:-}

 \displaystyle \sf \bigstar \:  \:  \:  \boxed{ \underline{ \boxed{ \bold{a(n) = a + (n - 1)d}}}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \displaystyle \sf \bigstar \:  \:  \:  \boxed{ \underline{ \boxed{ \bold{s(n) =  \frac{n}{2} (2a + (n - 1)d)}}}}

___________________________________________________

\bf\large\underline\purple{Solution:-}

 \displaystyle \sf \bigstar  \:  \:  \: {\bold{a(n) = a + (n - 1)d}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \displaystyle \sf \longrightarrow \: 45 = 5 + (n - 1)d  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \displaystyle \sf \longrightarrow \: 40 = (n - 1)d   \:  \:  \:  \:  \:  \: \small{ \rm{ \green{equation \: 1}}} \\  \\  \\  \displaystyle \sf \bigstar  \:  \:  \: {\bold{s(n) =  \frac{n}{2} (2a + (n - 1)d)}} \:  \:  \:  \:  \:  \:  \\  \\  \displaystyle \sf \longrightarrow \:  = 400 =  \frac{n}{2}  \times 50 \:  \:  \small{ \rm{ \green{for \: equation \: 1}}} \\  \\ \displaystyle \sf \longrightarrow  \small{ \rm {\green{n \:  = 16}}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Similar questions