Math, asked by jsjeetu2271, 9 months ago

First term of the arithmetic sequence is 40 and sum of first 6 terms is 290. a) find 3rd term?

Answers

Answered by atahrv
1

Answer:

\large\boxed{\star\:\:\:\:\:\:a_3=60\:\:\:\:\:\:\star}

Step-by-step explanation:

Given:-

a(first term)=40, S₆(sum of first 6 terms)=290.

To Find:-

a₃(3rd term) of its A.P.

Formula Applied:-

  • aₙ=a+(n-1)d
  • Sₙ=\frac{n}{2}[2a+(n-1)d]

Solution:-

   Sₙ=\frac{n}{2}[2a+(n-1)d] ,where S₆=290, n=6, a=40.

⇒290=\frac{6}{2}×[2(40)+(6-1)d]

⇒290=3×(80+5d)

⇒290=240+15d

⇒5d=290-240

⇒5d=50

⇒d=\frac{50}{5}

⇒d=10

Now, we have to find a₃,

⇒aₙ=a+(n-1)d, where a=40, n=3, d=10.

⇒a₃=a+(3-1)d

⇒a₃=40+(2×10)

⇒a₃=40+20

\implies\boxed{a_3=60}

Similar questions