Math, asked by rajeev473, 10 months ago

first terms of two APs are 2 and 5 and their common differences is 3 and -2 respectively if the difference of the sums of n terms of these two AP is 195 find the number of terms solve it ​

Answers

Answered by rocky6668
14

Answer:

n = 10

Step-by-step explanation:

A = 2                                                        

D = 3                                                                          

No. of terms = n                                                        

∴ The A.P. is 2,5,8,11,...............

S_n{} = \frac{n}{2}[2A+(n-1)D]

    = \frac{n}{2}[2(2)+(n-1)3]

    = \frac{n}{2}[4+3n-3]

    = \frac{n}{2}[3n+1]                           ------------------(i)

a = 5

d = -2

No. of terms = n

∴ The A.P. is 5,3,1,-1,-3,...............

s_{n} = \frac{n}{2}[2a+(n-1)d]

    = \frac{n}{2}[2(5)+ (n-1)(-2)]

    = \frac{n}{2}[10-2n+2]

    = \frac{n}{2}[12-2n]                     -------------------------(ii)

   

ATQ(according to the question)

S_{n}-s_{n} = 195

[\frac{n}{2}(3n+1)] - [\frac{n}{2}(12-2n)] = 195

\frac{3n^{2} }{2}+\frac{n}{2}-\frac{12n}{2}+\frac{2n^{2} }{2}  = 195\\\frac{5n^{2} }{2}   -\frac{11n}{2} = 195

\frac{n}{2}(5n-11) = 195\\5n^{2} -11n = 390

5n^{2} -11n-390\\ = 0

5n^{2}-50n+39n-390 = 0\\ 5n(n-10)+39(n-10) = 0\\(5n+39)(n-10) = 0

∴n-10 = 0                                &         5n+39 = 0

 n=10                                      &            n=\frac{-39}{5}

Because 'n' cannot in fraction form or with a negative sign.

Therefore n=10                              

Similar questions