Math, asked by asadujjamanmahim, 2 months ago

First three raw moments of a distribution about 2 are 3, 12 and 17 respectively. Find mean and

standard deviation of the distribution.​

Answers

Answered by s1051gourina22127
0

Answer:

denote the n-moment about the value 2 by M2 = E[(x - 2)"]

E[(X-2)]=1... (1) E[(X-2)] = 16... (2)

M3 = E(X-2)³] = -40 ... (3)

From (1), E[X]-E[2] =1=E[X]-2=1= Mean = H₁ = E[X] = 3

From (2), E[(x - 2)²] =E[(X-3 + 1)²] = E[(X-3)² + 2(x-3) + 1]

= E(X-3)²]+2E(X-3)+E(1) = 16

|Variance = μ₂ = E[(X-3)²] = 16-2E[X-3]-E[1] = 16-2(E[X]-3) -1

= 16-2(3-3) -1 = 15

From (3), E[(x - 2)³] = E((x − 3) + 1)²]

= E[(X-3)³] +3E[(X-3)2] +3E[X - 3] + E[1] = E[(x-3)³] + 3(15) + 3(0) + 1

<=-40

Skewness = μ3=E[(x-2)³]=-40-3(15)-3(0)-1 = -86

n-moment about the value 0 is M,,o= E[(X-0)"]=E[X"]

M₁.0=E[X]=H₂ = 3

M2.0=E[X²] = E[(X−2+2)²] = E[(x - 2)²] + 4E[X-2] + E[4] = 16+4(1) + 4 = 24

M3.0=E[X³] = E[(X−2+2)³] =E[(X-2)³] +6E[(X-2)²]+12E[X-2] + E[8] =-40+ 6(16) +12(1) +8=7

Answered by pulakmath007
5

SOLUTION

GIVEN

First three raw moments of a distribution about 2 are 3, 12 and 17 respectively.

TO DETERMINE

The mean and standard deviation of the distribution.

EVALUATION

We know that the r th raw moments of a distribution about a is

 \displaystyle \sf{  \mu_r =  \frac{ \sum  {(x_i - a )}^{r} }{n}  }

Now by the given condition a = 2

 \displaystyle \sf{  \mu_r =  \frac{ \sum  {(x_i - 2 )}^{r} }{n}  }

Now

 \displaystyle \sf{  \mu_1= 3  }

 \displaystyle \sf{  \implies \frac{ \sum  {(x_i - 2 )}^{} }{n}  = 3 }

 \displaystyle \sf{  \implies \frac{ \sum  {x_i}^{} }{n}   - 2= 3 }

 \displaystyle \sf{  \implies \frac{ \sum  {x_i}^{} }{n}= 5 }

 \displaystyle \sf{  \implies Mean = 5 }

 \boxed{ \:  \:  \displaystyle \sf{   Mean = 5 } \:  \: }

Now

 \displaystyle \sf{  \mu_2 = 12 }

 \displaystyle \sf{  \implies \:  \frac{ \sum  {(x_i - 2 )}^{2} }{n} = 12  }

 \displaystyle \sf{  \implies \:  \frac{ \sum  {x_i}^{2} - 4 \sum \:x_i  + 4n  }{n} = 12  }

 \displaystyle \sf{  \implies \: \frac{ \sum  {x_i}^{2} }{n}  -\frac{ 4 \sum \:x_i }{n}  + 4 = 12  }

 \displaystyle \sf{  \implies \: \frac{ \sum  {x_i}^{2} }{n} -   (4 \times 5)  + 4= 12  }

 \displaystyle \sf{  \implies \: \frac{ \sum  {x_i}^{2} }{n} - 16= 12  }

 \displaystyle \sf{  \implies \: \frac{ \sum  {x_i}^{2} }{n}  = 28 }

Variance

 \displaystyle \sf{   =  \frac{ \sum  {x_i}^{2} }{n} -  {( \bar{x})}^{2}   }

 \displaystyle \sf{   = 28 -  {5}^{2} }

 \displaystyle \sf{   = 28 - 25 }

 \displaystyle \sf{   = 3 }

 \boxed{ \sf{ \:  \: Variance}  = 3 \:  \:  \: }

Now

 \sf{Standard \:  Deviation  =  +  \sqrt{Variance} }

 \sf{ \implies \: Standard \: Deviation   =   1.732}

 \boxed{ \sf{ \:  \: Standard \:  Deviation  =  1.732 \:  \:  \: }}

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If the variance of the poissons distribution is 2,find the probability for r=1,2,3 and 4 from the recurrence relation of...

https://brainly.in/question/23494639

2. If random variables has Poisson distribution such that p(2) =p(3), then p(5) =

https://brainly.in/question/23859240

Similar questions