Math, asked by pavi7332, 3 months ago

first to answer proper gets brainliest​

Attachments:

Answers

Answered by dibendu8825
0

Answer:

1 i)1/9

ii)1/16

iii) 32

2 i) -64

ii) 1/64

iii) 625

iv) 1/9

v) 1/-2744

3 i) 5

ii) 1/2

iii) 29

Answered by Salmonpanna2022
2

Step-by-step explanation:

Evaluate:-

 {3}^{ - 2}  \\

⟹ ( \frac{3}{1} ) ^{ - 2}  \\

⟹( \frac{1}{3}  {)}^{2}  \\

⟹ \frac{1 \times 1 }{3 \times 3}  \\

⟹  \tt \red{ \frac{1}{9} } \:  \: ans. \\  \\

( - 4)^{ - 2}  \\

⟹( \frac{ - 4}{1} )^{ - 2}  \\

⟹( \frac{1}{4} )^{2}  \\

⟹ \frac{1 \times 1}{4 \times 4}  \\

⟹ \tt \red{ \frac{1}{16} } \:  \: ans. \\  \\

( \frac{1}{2} ) ^{ - 5}  \\

⟹( \frac{2}{1} )^{5}  \\

⟹ \frac{2 \times 2 \times 2 \times 2 \times 2}{1 \times 1 \times 1 \times 1 \times 1}  \\

⟹  \tt \red{\frac{32}{1} } \:  \: ans. \\  \\

Simplify and express the result in power notation with positive exponent:-

( - 4 {)}^{5}  +  ( - 4 {)}^{8}  \\

⟹ \frac{( - 4 {)}^{5} }{( - 4 {)}^{8} }  \\

⟹( - 4 {)}^{5 - 8}  \\

⟹( - 4 {)}^{ - 3}  \\

⟹ \frac{1}{( - 4 {)}^{3} }  \\  \\

( \frac{1}{ -  {2}^{3} }  {)}^{2}  \\

⟹ \frac{1}{ {2}^{3 \times 2} }  \\

⟹   \tt \red{\frac{1}{ {2}^{6} }} \:  \: ans.  \\  \\

( - 3 {)}^{4}   \times ( \frac{5}{3}  {)}^{4}  \\

⟹( - 1 {)}^{4}  \times (3 {)}^{4}  \times ( \frac{5}{3} ) ^{4}  \\

⟹( - 1 {)}^{4}  \times  {5}^{4}  \\

⟹ \tt \red{ {5}^{4} } \:  \: ans. \\  \\

( {3}^{ - 7}  \div  {3}^{ - 10} ) \times  {3}^{ - 5}  \\

⟹( \frac{ {3}^{ - 7} }{ {3}^{ - 10} } ) \times (3 {)}^{ - 5}   \\

⟹ {3}^{ - 7 + 10}  \times  {3}^{ - 5}  \\

⟹ {3}^{3}  \times  {3}^{ - 5}  \\

⟹ {3}^{3 - 5}  \\

⟹ {3}^{ - 2}  \\

⟹  \tt \red{\frac{1}{ {3}^{2} }}  \:  \: ans. \\  \\

 {2}^{ - 3 }  \times ( - 7 {)}^{ - 3}  \\

⟹ \frac{1}{ {2}^{3} }  \times  \frac{1}{( - 3)^{3} }  \\

=> $\underline{{\left({\frac{1}{{2}\mathrm{\times}{\mathrm{(}}\mathrm{{-}}{7}{\mathrm{)}}}}\right)}^{2}}$

=> $\frac{1}{{\mathrm{(}}\mathrm{{-}}{\mathrm{14}}{\mathrm{)}}^{3}}$ Ans.

Find the value of:-

$\left({{3}^{0}\mathrm{{+}}{4}^{\mathrm{{-}}{1}}}\right)$ × 2²

=> $\left({\frac{{1}\mathrm{{+}}{1}}{4}}\right)$ × 4

=> $\frac{5}{4}$ × 4

=> 5 Ans.

$\left({{2}^{\mathrm{{-}}{1}}\mathrm{\times}{4}^{\mathrm{{-}}{1}}}\right)$ ÷ 2-²

=> $\left({\frac{1}{2}\mathrm{\times}\frac{1}{4}}\right)$ ÷ $\frac{1}{{2}^{2}}$

=> $\frac{1}{8}$ ÷ $\frac{1}{4}$

=> $\frac{1}{8}$ × $\frac{4}{1}$

=> $\frac{1}{2}$ Ans.

Similar questions