Math, asked by ayushthegreat107, 8 months ago

First to give correct answer gets brainliest.​

Attachments:

Answers

Answered by Anonymous
5

Solution:-

given:-

f(x) =   \rm\cos( log x )

To find value of

f(x)f(4) -  \dfrac{1}{2}   \bigg\{f \big( \dfrac{x}{4}  \big) + f \big(4x) \bigg \}

Let

 \rm \: f(x)f(4)  = x_1

 \rm \: f \big( \dfrac{x}{4}  \big) + f \big(4x) = x_2

So we have to find

 \rm \: x_1 -  \frac{1}{2} x_2

Now take

 \rm \: f(x)f(4)  = x_1

and put the value

f(x) =   \rm\cos( log x )

 \rm \: x_1 =  \cos( log x ) . \cos( log4 )

Now take

\rm  x_2 = \: f \big( \dfrac{x}{4}  \big) + f \big(4x)

and put value

f(x) =   \rm\cos( log x )

we get

 \rm x_2 =  \cos( log \frac{x}{4}   )  +  \cos( log4x )

Using logarithm property

 \rm log(ab)  =  log(a)  +  log(b)

 \rm \:  log( \frac{a}{b} )  =  log(a)  -  log(b)

we get

 \rm \cos( logx  -  log4 )  +  \cos( log4+  logx  )

Apply trigonometry identity

 \rm \cos(a + b)  =  \cos(a)  \cos(b)  -  \sin(a)  \sin(b)

\rm \cos(a  -  b)  =  \cos(a)  \cos(b)   +  \sin(a)  \sin(b)

Now

 \rm \cos( logx) \times  \cos( log4)   +  \sin( logx )  \times  \sin( log4 )  + cos( logx) \times  \cos( log4)    -  \sin( logx )  \times  \sin( log4 )

Now we get

 \rm \: x_2 =  \rm \: 2 \cos( log4 ) . \cos( logx )

 \rm \: x_1 =  \cos( log x ) . \cos( log4 )

So we can write

 \rm \:  x_2 = 2 x_1

  \rm\dfrac{ x_2}{2}  =  x_1

 \rm \:  x_1  -  \frac{1}{2}  x_2 = 0

So we get

 \rm \: value \: of \: \rm \:  x_1  -  \frac{1}{2}  x_2 \: is \: 0

Option c is correct

Similar questions