Math, asked by sakshishinde745, 1 month ago

First two terms in expansion of e^x.secx by maclaurins theorem is

Answers

Answered by MaheswariS
4

\textbf{Given:}

\mathsf{e^x\,secx}

\textbf{To find:}

\mathsf{Maclaurin's\;series\;expansion\;of\;e^x\,secx}

\textbf{Solution:}

\mathsf{Let\;f(x)=e^x\,secx}

\implies\mathsf{f(0)=e^0\,sec0=1}

\mathsf{f'(x)=e^x\,secx\,tanx+secx\,e^x}

\implies\mathsf{f'(0)=e^0\,sec0\,tan0+sec0\,e^0=0+1=1}

\mathsf{f''(x)=(e^x\,secx\,tanx+e^x\,secx\,tanx\,tanx+e^x\,secx\,sec^2x)+(secx\,e^x+e^x\,secx\,tanx)}

\implies\mathsf{f''(0)=(e^0\,sec0\,tan0+e^0\,sec0\,tan0\,tan0+e^0\,sec^30)+(sec0\,e^0+e^0\,sec0\,tan0)}

\implies\mathsf{f''(0)=(0+0+1)+(1+0)=2}

\mathsf{Now,}

\textsf{Maclaurin series expansion of f(x) is}

\mathsf{f(x)=f(0)+\dfrac{f^1(0)}{1!}x+\dfrac{f^2(0)}{2!}x^2+\dfrac{f^3(0)}{3!}x^3+.\;.\;.\;.\;.\;.\;.}

\mathsf{e^x\,secx=1+\dfrac{1}{1!}x+\dfrac{2}{2!}x^2+.\;.\;.\;.\;.\;.\;.}

\implies\boxed{\mathsf{e^x\,secx=1+x+x^2+.\;.\;.\;.\;.\;.\;.}}

\textbf{Find more:}

Expansion of sinX is ascending power of X​

https://brainly.in/question/28857947

Answered by naitishsahu263
0

Answer:

Step-by-step explanation:

Similar questions