Math, asked by BrainlyLegend512, 3 months ago

First we increase the denominator of a positive fraction by 3 and next
time we decrease it by 5. The sum of the resulting fractions proves to be equal to 2/3 . Find the denominator of the fraction if its numerator is 2 .

Answers

Answered by PopularAnswerer01
85

Question:-

  • First we increase the denominator of a positive fraction by 3 and next time we decrease it by 5. The sum of the resulting fractions proves to be equal to 2/3 . Find the denominator of the fraction if its numerator is 2 .

To Find:-

  • Find the denominator .

Given:-

  • First we increase the denominator of a positive fraction by 3 and next time we decrease it by 5. The sum of the resulting fractions proves to be equal to 2/3 .

Solution:-

Let the denominator be " x "

According to the Question:-

\tt\implies \: \dfrac { 2 } { x + 3 } + \dfrac { 2 } { x - 5 } = \dfrac { 2 } { 3 }

\tt\implies \: \dfrac { 2( x - 5 ) + 2( x + 3 ) } { ( x + 3 ) ( x - 5 ) } = \dfrac { 2 } { 3 }

\tt\implies \: \dfrac { 2x - 10 + 2x + 6 } { { x }^{ 2 } - 5x +3x - 15 } = \dfrac { 2 } { 3 }

\tt\implies \: \dfrac { 4x - 4 } { { x }^{ 2 } - 2x - 15 } = \dfrac { 2 } { 3 }

\tt\implies \: 3( 4x - 4 ) = 2( { x }^{ 2 } - 2x - 15 )

\tt\implies \: 12x - 12 = { 2x }^{ 2 } - 4x - 30

\tt\implies \: { 2x }^{ 2 } - 16x - 18 = 0

\tt\implies \: { 2x }^{ 2 } - 18x + 2x - 18 = 0

\tt\implies \: 2x( x - 9 ) + 2( x - 9 ) = 0

\tt\implies \: ( x - 9 ) ( 2x + 2 )

\tt\implies \: x = 9 ; - 1


Anonymous: Great :D
Answered by kailashmannem
58

 \huge{\bf{\green{\mathfrak{Question:-}}}}

  • First we increase the denominator of a positive fraction by 3 and next time we decrease it by 5. The sum of the resulting fractions proves to be equal to 2/3 . Find the denominator of the fraction if its numerator is 2 .

 \huge {\bf{\orange{\mathfrak{Answer:-}}}}

  •  \sf{Let \:the \:given \:fraction \:be \:\dfrac{x}{y}.}

  •  \textsf{According to the question, x = 2.}

  •  \textsf{First, the denominator increases by 3.}

  •  \sf{So, \: the \: fraction \: is \: \: \dfrac{2}{y \: + \: 3}}

  •  \textsf{Second, the denominator is decreased by 5.}

  •  \sf{So, \: the \: fraction \: is \: \: \dfrac{2}{y \: - \: 5}}

  •  \sf{The\: sum\: of \:the \:fractions \:is\: \: \dfrac{2}{3}}

  •  \textsf{Solving,}

  •  \sf{\dfrac{2}{y \: + \: 3} \: + \: \dfrac{2}{y \: - \: 5} \: = \: \dfrac{2}{3}}

  •  \textsf{Taking LCM,}

  •  \sf{\dfrac{2(y \: - \: 5) \: + \: 2(y \: + \: 3)}{(y \: - \: 5) \: (y \: + \: 3)} \: = \: \dfrac{2}{3}}

  •  \sf{\dfrac{2y \: - \: 10 \: + \: 2y \: + \: 6}{y(y \: + \: 3) \: - \: 5(y \: + \: 3)} \: = \: \dfrac{2}{3}}

  •  \sf{\dfrac{4y \: - \: 4}{y^{2} \: + \: 3y \: - \: 5y \: - \: 15} \: = \: \dfrac{2}{3}}

  •  \sf{3(4y \: - \: 4) \: = \: 2(y^{2} \: - \: 2y \: - \: 15)}

  •  \sf{12y \: - \: 12 \: = \: 2y^{2} \: - \: 4y \: - \: 30}

  •  \sf{2y^{2} \: - \: 16y \: - \: 18 \: = \: 0}

  •  \textsf{Finding factors by PSF method,}

  •  \sf{P \: = \: - \: 36y^{2}}

  •  \sf{S \: = \: - \: 16y}

  •  \sf{F \: = \: - \: 18y \: , \: + \: 2y}

  •  \sf{2y^{2} \: - \: 18y \: + \: 2y \: - \: 18 \: = \: 0}

  •  \sf{2y(y \: - \: 9) \: + \: 2(y \: - \: 9) \: = \: 0}

  •  \sf{(2y \: + \: 2) \: (y \: - \: 9) \: = \: 0}

  •  \sf{2y \: + \: 2 \: = \: 0 \: , \: y \: - \: 9 \: = \: 0}

  •  \sf{2y \: = \: - \: 2 \: , \: y \: = \: 9}

  •  \boxed{\sf{y \: = \: - \: 1 \: , \: y \: = \: 9}}

 \huge{\bf{\red{\mathfrak{Conclusion:-}}}}

  •  \boxed{\therefore{\sf{The \: denominators \: of \: the \: fraction \: are \: \: 9 \: , \: - \: 1.}}}

Similar questions