Biology, asked by maniprakash0, 11 months ago

Five difference between Respirations and Photosynthesis?​

Answers

Answered by sofie222
3

Answer:

the main difference is that in respiration we take Oxygen and release or exhale carbon dioxide and in photosynthesis plants take CO2 and release oxygen.

Answered by Gautam6325
0

Respiration (physiology)

Exchange of carbon dioxide and oxygen between environment and tissues

In physiology, respiration is the movement of oxygen from the outside environment to the cells within tissues, and the transport of carbon dioxide in the opposite direction.

The physiological definition of respiration differs from the biochemical definition, which refers to a metabolic process by which an organism obtains energy (in the form of ATP and NADPH ) by oxidising nutrients and releasing waste products. Although physiologic respiration is necessary to sustain cellular respiration and thus life in animals, the processes are distinct: cellular respiration takes place in individual cells of the organism, while physiologic respiration concerns the diffusion and transport of metabolites between the organism and the external environment.

In animals with lungs, physiological respiration involves respiratory cycles of inhaled and exhaled breaths. Inhalation (breathing in) is usually an active movement. The contraction of the diaphragm muscle cause a pressure variation, which is equal to the pressures caused by elastic, resistive and inertial components of the respiratory system. In contrast, exhalation (breathing out) is usually a passive process. Breathing in brings air into the lungs where the process of gas exchange takes place between the air in the alveoli and the blood in the pulmonary capillaries

The process of breathing does not fill the alveoli with atmospheric air during each inhalation (about 350 ml per breath), but the inhaled air is carefully diluted and thoroughly mixed with a large volume of gas (about 2.5 liters in adult humans) known as the functional residual capacity which remains in the lungs after each exhalation, and whose gaseous composition differs markedly from that of the ambient air. Physiological respiration involves the mechanisms that ensure that the composition of the functional residual capacity is kept constant, and equilibrates with the gases dissolved in the pulmonary capillary blood, and thus throughout the body. Thus, in precise usage, the words breathing and ventilation are hyponyms, not synonyms, of respiration; but this prescription is not consistently followed, even by most health care providers, because the term respiratory rate (RR) is a well-established term in health care, even though it would need to be consistently replaced with ventilation rate if the precise usage were to be followed.

PHOTOSYNTHESIS

Photosynthesis is the process used by plants, algae and certain bacteria to harness energy from sunlight and turn it into chemical energy. Here, we describe the general principles of photosynthesis and highlight how scientists are studying this natural process to help develop clean fuels and sources of renewable energy.

Types of photosynthesis

There are two types of photosynthetic processes: oxygenic photosynthesis and anoxygenic photosynthesis. The general principles of anoxygenic and oxygenic photosynthesis are very similar, but oxygenic photosynthesis is the most common and is seen in plants, algae and cyanobacteria.

During oxygenic photosynthesis, light energy transfers electrons from water (H2O) to carbon dioxide (CO2), to produce carbohydrates. In this transfer, the CO2 is "reduced," or receives electrons, and the water becomes "oxidized," or loses electrons. Ultimately, oxygen is produced along with carbohydrates.

Oxygenic photosynthesis functions as a counterbalance to respiration by taking in the carbon dioxide produced by all breathing organisms and reintroducing oxygen to the atmosphere.

On the other hand, anoxygenic photosynthesis uses electron donors other than water. The process typically occurs in bacteria such as purple bacteria and green sulfur bacteria, which are primarily found in various aquatic habitats.

"Anoxygenic photosynthesis does not produce oxygen — hence the name," said David Baum, professor of botany at the University of Wisconsin-Madison. "What is produced depends on the electron donor. For example, many bacteria use the bad-eggs-smelling gas hydrogen sulfide, producing solid sulfur as a byproduct."

Though both types of photosynthesis are complex, multistep affairs, the overall process can be neatly summarized as a chemical equation.

Oxygenic photosynthesis is written as follows:

6CO2 + 12H2O + Light Energy → C6H12O6 + 6O2 + 6H2O

Similar questions