Five distinct positive integers are in a arithmetic progression with a positive common difference. their sum is 10020, then the smallest possible value of the last term is
Answers
Answered by
2
Answer:
2002...2003.....2004...2005.....2006...
answer is 2006
Answered by
3
Answer:
Step-by-step explanation:
Let the five posiive integers in ap be
a-10d,a-5d,a,a+5d,a+10d
A/Q
a-10+a-5d+a+a+5d+a+10d=10020
5a=10020
a=2004
Again,
S5=10020
5/2[a+l]=10020
[a+l]=10020×2/5
a+l=2(2004)
l=2(2004)-2004
l=2004
Similar questions