five full solution plz.
Attachments:
Answers
Answered by
1
See,
If a + b + c = 0
Then,
a + b + c = 0
a + b = - c -- (I)
(a + b)^3 = (- c)^3
a^3 + b^3 + 3ab (a + b) = - c^3
from equation (I) a + b = - c
a^3 + b^3 + 3ab (- c) = - c^3
a^3 + b^3 - 3abc = - c^3
a^3 + b^3 + c^3 = 3abc
Hence,
a^3 + b^3 + c^3 ‘not equal’ 0
but,
a^3 + b^3 + c^3 ‘equal’ 3abc
If a + b + c = 0
Then,
a + b + c = 0
a + b = - c -- (I)
(a + b)^3 = (- c)^3
a^3 + b^3 + 3ab (a + b) = - c^3
from equation (I) a + b = - c
a^3 + b^3 + 3ab (- c) = - c^3
a^3 + b^3 - 3abc = - c^3
a^3 + b^3 + c^3 = 3abc
Hence,
a^3 + b^3 + c^3 ‘not equal’ 0
but,
a^3 + b^3 + c^3 ‘equal’ 3abc
ddebo9:
thanx
Answered by
0
Given a + b + c = 0 ......... (1)
Identity,
a^3 + b^3 + c^3 = (a + b + c) (a^2 + b^2 + c^2 – ab – bc - ca) + 3abc
Take 3abc to left
a^3 + b^3 + c^3 - 3abc = (a + b + c) (a^2 + b^2 + c^2 – ab – bc - ca) ........... ...............(2)
Subsitute the value a + b + c = 0 in (2) i. e; in
a^3 + b^3 + c^3 - 3abc = (a + b + c) (a^2 + b^2 + c^2 – ab – bc - ca)
We get
a^3 + b^3 + c^3 - 3abc = (0) x (a^2 + b^2 + c^2 – ab – bc - ca)
= a^3 + b^3 + c^3 - 3abc = 0
= a^3 + b^3 + c^3 = 3abc
Therefore, a^3 + b^3 + c^3 not ZERO but it is 3abc
Identity,
a^3 + b^3 + c^3 = (a + b + c) (a^2 + b^2 + c^2 – ab – bc - ca) + 3abc
Take 3abc to left
a^3 + b^3 + c^3 - 3abc = (a + b + c) (a^2 + b^2 + c^2 – ab – bc - ca) ........... ...............(2)
Subsitute the value a + b + c = 0 in (2) i. e; in
a^3 + b^3 + c^3 - 3abc = (a + b + c) (a^2 + b^2 + c^2 – ab – bc - ca)
We get
a^3 + b^3 + c^3 - 3abc = (0) x (a^2 + b^2 + c^2 – ab – bc - ca)
= a^3 + b^3 + c^3 - 3abc = 0
= a^3 + b^3 + c^3 = 3abc
Therefore, a^3 + b^3 + c^3 not ZERO but it is 3abc
Similar questions