Math, asked by sidthinkdifferent, 1 year ago

Five real numbers a1, a2, a3, a4, and a5 are such that

√(a1 - 1 ) + 2√(a2 - 4) + 3√(a3 - 9) + 4√(a4 - 16) + 5√(a5 - 25) = (a1 + a2 + a3 + a4 + a5)/2.

Find a1 + a2 + a3 + a4 + a5.

Answers

Answered by abhi178
43
\sqrt{a_1-1}+2\sqrt{a_2-4}+3\sqrt{a_3-9}+4\sqrt{a_4-16}+5\sqrt{a_5-25} = \frac{a_1+a_2+a_3+a_4+a_5}{2}

or, \sqrt{a_1-1}+\sqrt{4a_2-16}+\sqrt{9a_3-81}+\sqrt{16a_4-256}+\sqrt{25a_5-625} = \frac{a_1}{2}+\frac{a_2}{2}+\frac{a_3}{2}+\frac{a_4}{4}+\frac{a_5}{2}

or,

as five real numbers , a_1,a_2,a_3,a_4 and a_5

so, we can assume \sqrt{a_1-1}=\frac{a_1}{2}
or, 4a_1-4=a_1^2

or, a_1^2-4a_1+4=0\implies a_1=2

similarly, \sqrt{4a_2-16}=\frac{a_2}{2}

or, 16a_2-64=a_2^2

or, a_2^2-16a_2+64=0\implies a_2=8

\sqrt{9a_3-81}=\frac{a_3}{2}

or, 36a_3-324=a_3^2

or, a_3^2-36a_3+324=0\implies a_3=18

similarly, a_4=32 and a_5=50

so, a_1+a_2+a_3+a_4+a_5=2+8+18+32+50
= 110.
Answered by jkutz
2

a1 + a2 + a3 + a4 + a5 = 110

Similar questions