Five workers take 12 days to weed a field How many days would 6 workers take?
Answers
Answer:
The area of a square field is 5184 ml. A rectangular field, whose length is twice its
breadth, has its perimeter equal to the perimeter of the square field. Find the area
of the rectangular field.
Step-by-step explanation:
\sf\small\underline\red{Let:-}
Let:−
\tt{\implies breadth\:_{(rectangle)}=x}⟹breadth
(rectangle)
=x
\tt{\implies length\:_{(rectangle)}=2x}⟹length
(rectangle)
=2x
\sf\small\underline\red{Given:-}
Given:−
\tt{\implies Area\:_{(square\: field)}=5184\:m^2}⟹Area
(squarefield)
=5184m
2
\tt{\implies length\:_{(rectangle)}=2\times\:of\: breadth}⟹length
(rectangle)
=2×ofbreadth
\sf\small\underline\red{To\: Find:-}
ToFind:−
\tt{\implies Area\:_{(rectangular\: field)}=?}⟹Area
(rectangularfield)
=?
\sf\small\underline\red{Solution:-}
Solution:−
To calculate the area of rectangular field at first we have find out it's dimensions with the of given clue in the Que. As given in the question perimeter of square field is equal to the perimeter of rectangular field so, here at first we have to find perimeter of square then calculate the dimensions of rectangular field and it's area.
\sf\small\underline\red{Formula\: Used:-}
FormulaUsed:−
\tt{\implies Area\:of\: square=side^2}⟹Areaofsquare=side
2
\tt{\implies side^2=5184}⟹side
2
=5184
\tt{\implies side=\sqrt{5184}}⟹side=
5184
\tt{\implies side=72m}⟹side=72m
Now calculate perimeter of rectangle:-]
\tt{\implies Perimeter\:_{(rectangle)}=Perimeter\:_{(square)}}⟹Perimeter
(rectangle)
=Perimeter
(square)
\tt{\implies Perimeter\:_{(rectangle)}=4\times\:side\:_{(square)}}⟹Perimeter
(rectangle)
=4×side
(square)
\tt{\implies Perimeter\:_{(rectangle)}=4*72}⟹Perimeter
(rectangle)
=4∗72
\tt{\implies Perimeter\:_{(rectangle)}=288m}⟹Perimeter
(rectangle)
=288m
Now calculate L and B of rectangle:-]
\tt{\implies 2(l+b)=288}⟹2(l+b)=288
\tt{\implies 2(2x+x)=288}⟹2(2x+x)=288
\tt{\implies 2(3x)=288}⟹2(3x)=288
\tt{\implies 6x=288}⟹6x=288
\tt{\implies x=48m}⟹x=48m
Now calculate length and breadth here:-]
\tt{\implies breadth\:_{(rectangle)}=x=48m}⟹breadth
(rectangle)
=x=48m
\tt{\implies length\:_{(rectangle)}=2x=2(48)=96m}⟹length
(rectangle)
=2x=2(48)=96m
Now calculate area of rectangle:-]
\tt{\implies Area\:_{(rectangular\: field)}=length\times\: breadth}⟹Area
(rectangularfield)
=length×breadth
\tt{\implies Area\:_{(rectangular\: field)}=96\times\:48}⟹Area
(rectangularfield)
=96×48
\tt{\implies Area\:_{(rectangular\: field)}=4608m^2}⟹Area
(rectangularfield)
=4608m
2
\sf\large{Hence,}Hence,
\bf{\implies Area\:_{(rectangular\: field)}=4608\:m^2}⟹Area
(rectangularfield)
=4608m
2
Step-by-step explanation:
15 days I hope this will help you