fixation of one mole of glucose require how many cycli pathway in calvin cycle
Answers
Answered by
0
Calvin cycle is the cycle of chemical reactions performed by plants to “fix” carbon from CO2 into three-carbon sugars.
Later, plants and animals can turn these three-carbon compounds into amino acids, nucleotides, and more complex sugars such as starches.
This process of “carbon fixation” is how most new organic matter is created. The sugars created in the Calvin cycle are also used by plants for long-term energy storage, unlike ATP which is used up quickly after it is created.
These plant sugars can also become a source of energy for animals who eat the plants, and predators who eat those herbivores.
The Calvin cycle is also sometimes referred to as the “light independent” reactions of photosynthesis, since it is not powered directly by photons from the Sun. Instead, the Calvin cycle is powered by ATP and NADPH, which are created by harnessing the energy from photons in the light-dependent reactions.
Function of the Calvin Cycle
The function of the Calvin cycle is to create three-carbon sugars, which can then be used to build other sugars such as glucose, starch, and cellulose that is used by plants as a structural building material. The Calvin cycle takes molecules of carbon straight out of the air and turns them into plant matter.
This makes the Calvin cycle vital for the existence of most ecosystems, where plants form the base of the energy pyramid. Without the Calvin cycle, plants would be unable to store energy in a form that herbivores could digest. Carnivores would subsequently not have access to energy stored in the bodies of herbivores!
The carbon backbones created in the Calvin cycle are also used by plants and animals to make proteins, nucleic acids, lipids, and all the other building blocks of life.
The Calvin cycle also regulates the levels of carbon dioxide, a greenhouse gas, in the Earth’s atmosphere. Scientists have raised concerns because, in addition to putting huge amounts of CO2 back into the air by burning coal, oil, and gasoline, humans have also cut down about half of all Earth’s forests, which play an important role in removing CO2 from the air.
We will discuss how the Calvin cycle creates simple sugars from CO2 below.
Calvin Cycle Steps
Carbon Fixation
In carbon fixation, a CO2 molecule from the atmosphere combines with a five-carbon acceptor molecule called ribulose-1,5-bisphosphate (RuBP).
The resulting six-carbon compound is then split into two molecules of the three-carbon compound, 3-phosphoglyceric acid (3-PGA).
This reaction is catalyzed by the enzyme RuBP carboxylase/oxygenase, also known as RuBisCO. Due to the key role it plays in photosynthesis, RuBisCo is probably the most abundant enzyme on Earth.
Reduction
In the second stage of the Calvin cycle, the 3-PGA molecules created through carbon fixation are converted into molecules of a simple sugar – glyceraldehyde-3 phosphate (G3P).
This stage uses energy from ATP and NADPH created in the light-dependent reactions of photosynthesis. In this way, the Calvin cycle becomes the way in which plants convert energy from sunlight into long-term storage molecules, such as sugars. The energy from the ATP and NADPH is transferred to the sugars.
This step is called “reduction” because NADPH donates electrons to the 3-phosphoglyceric acid molecules to create glyceraldehyde-3 phosphate. In chemistry, the process of donating electrons is called “reduction,” while the process of taking electrons
Later, plants and animals can turn these three-carbon compounds into amino acids, nucleotides, and more complex sugars such as starches.
This process of “carbon fixation” is how most new organic matter is created. The sugars created in the Calvin cycle are also used by plants for long-term energy storage, unlike ATP which is used up quickly after it is created.
These plant sugars can also become a source of energy for animals who eat the plants, and predators who eat those herbivores.
The Calvin cycle is also sometimes referred to as the “light independent” reactions of photosynthesis, since it is not powered directly by photons from the Sun. Instead, the Calvin cycle is powered by ATP and NADPH, which are created by harnessing the energy from photons in the light-dependent reactions.
Function of the Calvin Cycle
The function of the Calvin cycle is to create three-carbon sugars, which can then be used to build other sugars such as glucose, starch, and cellulose that is used by plants as a structural building material. The Calvin cycle takes molecules of carbon straight out of the air and turns them into plant matter.
This makes the Calvin cycle vital for the existence of most ecosystems, where plants form the base of the energy pyramid. Without the Calvin cycle, plants would be unable to store energy in a form that herbivores could digest. Carnivores would subsequently not have access to energy stored in the bodies of herbivores!
The carbon backbones created in the Calvin cycle are also used by plants and animals to make proteins, nucleic acids, lipids, and all the other building blocks of life.
The Calvin cycle also regulates the levels of carbon dioxide, a greenhouse gas, in the Earth’s atmosphere. Scientists have raised concerns because, in addition to putting huge amounts of CO2 back into the air by burning coal, oil, and gasoline, humans have also cut down about half of all Earth’s forests, which play an important role in removing CO2 from the air.
We will discuss how the Calvin cycle creates simple sugars from CO2 below.
Calvin Cycle Steps
Carbon Fixation
In carbon fixation, a CO2 molecule from the atmosphere combines with a five-carbon acceptor molecule called ribulose-1,5-bisphosphate (RuBP).
The resulting six-carbon compound is then split into two molecules of the three-carbon compound, 3-phosphoglyceric acid (3-PGA).
This reaction is catalyzed by the enzyme RuBP carboxylase/oxygenase, also known as RuBisCO. Due to the key role it plays in photosynthesis, RuBisCo is probably the most abundant enzyme on Earth.
Reduction
In the second stage of the Calvin cycle, the 3-PGA molecules created through carbon fixation are converted into molecules of a simple sugar – glyceraldehyde-3 phosphate (G3P).
This stage uses energy from ATP and NADPH created in the light-dependent reactions of photosynthesis. In this way, the Calvin cycle becomes the way in which plants convert energy from sunlight into long-term storage molecules, such as sugars. The energy from the ATP and NADPH is transferred to the sugars.
This step is called “reduction” because NADPH donates electrons to the 3-phosphoglyceric acid molecules to create glyceraldehyde-3 phosphate. In chemistry, the process of donating electrons is called “reduction,” while the process of taking electrons
Similar questions