Math, asked by saiteja6595, 8 months ago

fixed points of bilinear transformation w=(2+i)z-2/z+i

Answers

Answered by MaheswariS
20

\textbf{Given:}

\mathsf{w=\dfrac{(2+i)z-2}{z+i}}

\textbf{To find:}

\textsf{Fixed points of the given bilinear transformation}

\textbf{Solution:}

\textsf{Fixed points of the bilinear transformation is obtained}

\textsf{by putting w(z)=z}

\implies\mathsf{\dfrac{(2+i)z-2}{z+i}=z}

\implies\mathsf{(2+i)z-2=z(z+i)}

\implies\mathsf{2z+iz-2=z^2+iz}

\implies\mathsf{2z-2=z^2}

\implies\mathsf{z^2-2z+2=0}

\implies\mathsf{z^2-2z+1=-1}

\implies\mathsf{(z-1)^2=i^2}

\implies\mathsf{z-1=\pm\,i}

\implies\mathsf{z=1\pm\,i}

\textbf{Answer:}

\textsf{The fixed points are 1+i and 1-i}

Answered by mahek77777
5

\textbf{Given:}

\mathsf{w=\dfrac{(2+i)z-2}{z+i}}

\textbf{To find:}

\textsf{Fixed points of the given bilinear transformation}

\textbf{Solution:}

\textsf{Fixed points of the bilinear transformation is obtained}

\textsf{by putting w(z)=z}

\implies\mathsf{\dfrac{(2+i)z-2}{z+i}=z}

\implies\mathsf{(2+i)z-2=z(z+i)}

\implies\mathsf{2z+iz-2=z^2+iz}

\implies\mathsf{2z-2=z^2}

\implies\mathsf{z^2-2z+2=0}

\implies\mathsf{z^2-2z+1=-1}

\implies\mathsf{(z-1)^2=i^2}

\implies\mathsf{z-1=\pm\,i}

\implies\mathsf{z=1\pm\,i}

\textbf{Answer:}

\textsf{The fixed points are 1+i and 1-i}

Similar questions