Math, asked by aratrikaguin2020, 3 months ago

floor of a room is 12 x 6 this floor has to be fitted with tiles of dimension 10 x 2 what will be the total cost if cost of tiling in 5

Answers

Answered by Agamsain
7

Correct Question :-

  • Floor of a room have Dimensions (12 x 6)m. This floor has to be fitted with tiles of dimension (10 x 2)cm. What will be the total cost if cost of 1 tile is 5 Rs ?

Answer :-

  • Total Cost of Tiles = 1,80,000 Rs

Given :-

  • Dimensions of Floor = (12 × 6) m
  • Dimensions of Tile = (10 × 2) cm

To Find :-

  • Total Cost of Tiles = ?

Explanation :-

As per above given, we have Dimensions of Floor and 1 Tile. First We need to find the number of tiles that is required to cover the Floor.

‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒

\blue { \boxed { \bf \bigstar \: Area \: of \: Floor = Length \times Width \: \bigstar }}

\rm : \: \longrightarrow Length \times Width = Area \: of \: Floor

\rm : \: \longrightarrow 12 \times 6 \: m^2

\rm : \: \longrightarrow 72 \: m^2

\green { \bf : \: \longrightarrow 720000 \: cm^2 }

\blue { \boxed { \bf \bigstar \: Area \: of \: Tile = Length \times Width \: \bigstar }}

\rm : \: \longrightarrow Length \times Width = Area \: of \: Tile

\rm : \: \longrightarrow 10 \times 2 \: cm^2

\green { \bf : \: \longrightarrow 20 \: cm^2 }

\blue { \boxed { \bf \bigstar \: No. \: of \: Tiles \: Required = \frac{Area \: of \: Floor}{Area \: of \: 1 \: Tile} \: \bigstar }}

\rm : \: \longrightarrow \dfrac{Area. \: of \: Floor}{Area \: of \: 1 \: Tile} = No. \: of \: Tiles

\rm : \: \longrightarrow \dfrac{720000}{20}

\green { \bf : \: \longrightarrow 36000 \: Tiles }

‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒

Now, we will find the total cost of Tiles

\rm \hookrightarrow Cost \: of \: 1 \: Tile = \bold{5 \: R_S}

\rm \hookrightarrow Cost \: of \: 36000 \: Tiles,

            \rm = (36000 \times 5) \: R_S

           \red { \underline { \boxed { \bf = 180000 \: R_S }}}

Hence, the Cost of painting the wall is 180000 Rs.

‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒

\underline { \underline { \bf \huge \text More \: \large \text To \: \large \text Know }}

\setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\multiput(0,0)(5,0){2}{\line(0,1){3}}\multiput(0,0)(0,3){2}{\line(1,0){5}}\put(0.03,0.02){\framebox(0.25,0.25)}\put(0.03,2.75){\framebox(0.25,0.25)}\put(4.74,2.75){\framebox(0.25,0.25)}\put(4.74,0.02){\framebox(0.25,0.25)}\multiput(2.1,-0.7)(0,4.2){2}{\sf\large Length}\multiput(-1.4,1.4)(6.8,0){2}{\sf\large Width}\put(-0.5,-0.4){\bf A}\put(-0.5,3.2){\bf D}\put(5.3,-0.4){\bf B}\put(5.3,3.2){\bf C}\end{picture}

Formulas Related to the Rectangle,

\rm \odot \: Area \: of \: Rectangle = Length \times Width

\rm \odot \: Perimeter \: of \: Rectangle = 2(Length + Width)

\rm \odot \: Diagonal \: of \: Rectangle = \sqrt{(Length)^{2}+(Width)^{2}}

\setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\multiput(0,0)(4,0){2}{\line(0,1){4}}\multiput(0,0)(0,4){2}{\line(1,0){4}}\put(-0.5,-0.5){\bf D}\put(-0.5,4.2){\bf A}\put(4.2,-0.5){\bf C}\put(4.2,4.2){\bf B}\put(1.5,-0.6){\bf\large Side}\put(4.4,2){\bf\large Side}\end{picture}

Formulas Related to the Square,

\rm \odot \: Area \: of \: Square = Side \times Side = (Side)^2

\rm \odot \: Perimeter \: of \: Square = 4 \times Side

\rm \odot \: Diagonal \: of \: Square = Side\sqrt{2}

Similar questions