Math, asked by sudipta320, 5 months ago

floral design on a floor is a made up of 16 tiles that are triangular side of a triangle Being 9 cm,28 cm and35 cm . Find the cost of polishing the tiles at the rate of 50 p per cm².​

Answers

Answered by Rubellite
15

\huge{\underline{\underline{\sf{\purple{Required\:Answer:}}}}}

For one tile

⠀⠀⠀⠀α = 9 cm, b = 28 cm, c = 35 cm

\displaystyle{\sf{ \therefore \:\:\:\:\:s= \dfrac{a+b+c}{2} = \dfrac{9+28+35}{2}}}

\implies{\sf{36\:cm}}

\therefore Areα of one tile

\displaystyle{\sf{= \sqrt{s(s-a)(s-b)(s-c)}}}

\displaystyle{\sf{= \sqrt{36(36-9)(36-28)(36-35)}}}

\displaystyle{\sf{= \sqrt{36(17)(8)(1)}}}

\displaystyle{\sf{=36\sqrt{6}cm^{2}}}

{\therefore} Areα of 16 tile

\displaystyle{\sf{=36\sqrt{6}cm^{2}\times16 = 576\sqrt{6}cm^{2}}}

{\therefore \:\:\:\:} Cost of polishing the tiles αt the rαte of 50 p per cm² .

:\implies{\sf{576 \sqrt{6} \times 50p = ₹ \dfrac{576 \sqrt{6} \times 60}{100}}}

:\implies{\sf{₹288 \sqrt{6}}}

\large{\implies{\boxed{\bf{\pink{₹705.60}}}}}

__________________________

\huge{\underbrace{\sf{\blue{Explore\:More!}}}}

Areα of α Triαngle — By Heron's Formulα

Areα of α triangle =

\displaystyle{\boxed{\sf{\orange{ \sqrt{s(s-a)(s-b)(s-c)}}}}}

  • Where α, b and c αre the sides of the triαngle, αnd s = semi - perimeter, i.e., hαlf the perimeter of the triαngle = \displaystyle{\boxed{\sf{\red{ \dfrac{a+b+c}{2}}}}}

This formulα for the areα of α triαngle wαs given by Her on and is therefore known as Heron's Formulα.

_____________________

Attachments:
Answered by aryan073
7

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Question :

Flora design on a floor is a made up of 16 tiles that are triangular side of a triangle being 9cm, 28cm and 35cm. Find the cost of polishing the tiles at the rate of 50 p per cm².

Given:

\\ \implies\rm{ a=35cm , b=28 cm,  and \: c=9 cm}

\mathtt{\huge{\underline{\red{Answer\: :}}}}

  \\ \implies \large \sf \: semi \: perimeter \: of \: tile \:  =  \frac{a + b + c}{2}

  \\ \\  \implies \large \sf \: semi \: perimeter \: of \: tile \:  =  \frac{35 + 28 + 9}{2}  = 36cm

  \\  \\ \implies  \boxed{\large \sf \: \: semi \: perimeter \: of \: tile \:  = 36cm}

 \\  \\  \implies \large \sf \: area \: of  \: \triangle =  \sqrt{s(s - a )(s - b)(s - c)}

  \\  \\ \implies \large \sf \: area \: of  \: \triangle =  \sqrt{36(36 - 35)(36 - 28)(36 - 9)}

 \\  \\  \implies \large \sf \ area \:  \: of \:  \:  \triangle =  \sqrt{36 \times 1 \times 8 \times 27}

  \\  \\ \implies \large \sf \: area \: of \:  \triangle = 36 \times 2.45

 \\  \\  \implies \boxed{ \large \sf \: area \: of  \: \triangle \:  = 88.2 {cm}^{2} }

 \\  \\  \implies \large \sf \: area \: of \: total \: 16 \: tiles \:  = 16 \times 88.2 = 1411.2 {cm}^{2}

  \\  \\ \implies \boxed {\large \sf{area \: of \: total \: 16 \: tiles \:  = 1411.2 {cm}^{2} }}

 \\  \\  \implies \large \sf \: cost \: of \: polishing \: per \:  {cm}^{2}  \: area \:  = 50p

 \\  \\  \implies  \large \sf{ \: cost \: of \: polishing \: 1411.2 {cm}^{2}  \: area \:  = 50 \times 1411.2}

\\ \\ \implies\large{\boxed{\sf{ cost \: of \: polishing \: 1411.2cm^2 \: area=Rs 705.60}}}

Similar questions