Math, asked by sanchitachatterjee49, 1 month ago

fn is a perfect square and n² = k (mod 10) with 0≤k<9, find the possible values of k​

Answers

Answered by SrijanShrivastava
1

Given that,

n is a perfect square

 {n}^{2}  \equiv k  \: (mod \: 10), \:  \:  \: 0 \leq k \le 9

 \frac{ {n}^{2} - k }{10} \in ℤ

For 0≤k≤9

Let, n = 10j + i \:  \:,   \:  \:  \:  \:  \:  \: \: j \inℤ {}^{ + }   \cup \{0 \}

 \implies i \in \{0,1,4,5,6,9 \}

 {n}^{2}  = 100 {j}^{2}  +20ji+  {i}^{2}  \equiv k \: (mod \: 10)

 {i}^{2}  \equiv k \:  (mod  \: 10)

 {i}^{2} \in \{0,1,16,25,36,81\}

Then,

 \boxed{k \in \{0,1,5,6 \}}

Similar questions