fo this and get 100 points fast
Attachments:
Answers
Answered by
2
Step-by-step explanation:
[1+cotA-CosecA]*[1+tanA+secA]
= 1 + tanA + secA + cotA + 1 + cosecA - (1/sinA) - (1/cosA) - secAcosecA
= 1 + tanA + secA + cotA + 1 + cosecA - cosecA - secA - secAcosecA
= 2 + tanA + cotA - secAcosecA
= 2 + [(sin^2A + cos^2A)/(sinAcosA)] - secAcosecA
= 2 + 1/(sinAcosA) - secAcosecA
= 2 + secAcosecA - secAcosecA
= 2
HOPE ITS HELP UHH
Answered by
1
Answer:
L. H. S
(1 + cos/sin - 1/sin) (1+ sin/cos + 1/ cos)
((sin + cos - 1)/sin) ((cos + sin + 1)/cos)
(sincos + sin^2 + sin + cos^2+ sincos +cos-cos -sin -1)/sincos
(2sincos + 1)/sincos
1+1
2
hence proved
L. H. S=R.H.S
mark me as brainliest
Similar questions