Math, asked by hafizsk799, 1 month ago

Foci of the ellipse 2x² + 3y2 - 4x -12y +13 = 0 are .. ​

Answers

Answered by MaheswariS
4

\underline{\textbf{Given:}}

\textsf{Ellipse is}

\mathsf{2x^2+3y^2-4x-12y+13=0}

\underline{\textbf{To find:}}

\textsf{Foci of the given ellipse}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\mathsf{2x^2+3y^2-4x-12y+13=0}

\mathsf{2(x^2-2x)+3(y^2-4y)+13=0}

\mathsf{2(x^2-2x+1-1)+3(y^2-4y+4-4)+13=0}

\mathsf{2((x-1)^2-1)+3((y-2)^2-4)+13=0}

\mathsf{2(x-1)^2-2+3(y-2)^2-12+13=0}

\mathsf{2(x-1)^2+3(y-2)^2=1}

\mathsf{\dfrac{(x-1)^2}{\dfrac{1}{2}}+\dfrac{(y-2)^2}{\dfrac{1}{3}}=1}

\mathsf{Comparing\;this\;with\;\dfrac{(x-h)^2}{a^2}+\dfrac{(y-k)^2}{b^2}=1\;we\;get\;}

\mathsf{a^2=\dfrac{1}{2}\;and\;b^2=\dfrac{1}{3}}

\mathsf{ae=\sqrt{a^2-b^2}}

\mathsf{ae=\sqrt{\dfrac{1}{2}-\dfrac{1}{3}}}

\mathsf{ae=\sqrt{\dfrac{3-2}{6}}}

\mathsf{ae=\sqrt{\dfrac{1}{6}}}

\mathsf{ae=\dfrac{1}{\sqrt{6}}}

\therefore\mathsf{Foci\;are\;(\pm\,ae,0)}

\implies\mathsf{\left(\pm\dfrac{1}{\sqrt{6}},0\right)}

\underline{\textbf{Find more:}}

Answered by amitnrw
3

Given  : 2x² + 3y2 - 4x -12y +13 = 0  

To Find : Foci of the ellipse

Solution:

2x² + 3y² - 4x -12y +13 = 0  

=> 2x² - 4x  + 3y²  - 12y + 13 = 0

=> 2(x²  - 2x + 1) - 2 + 3(y² - 4y + 4) -  12 + 13 = 0

=> 2(x - 1)² + 3(y - 2)² = 1

=> (x-1)²/(1/2)  + (y - 2)²/(1/3) =  1

Hence (x- h)²/a² + (y-k)²/b² = 1

h = 1 , k = 2

a² = 1/2

b²  = 1/3

c² = 1/2 - 1/3  = 1/6  => c = 1/√6

foci are ( h + c , k ) and ( h - c , k)

=> ( 1 + 1/√6 , 2) and ( 1 - 1/√6 , 2)

Learn More:

If P is a point on the ellipse

brainly.in/question/13917159

Coordinates of the foci of the ellipse5x2 +9y2 +10x - 36y -4 = 0 areA ...

brainly.in/question/13900085

Attachments:
Similar questions