Math, asked by Aashishking1, 4 months ago

Following data are in increasing order. If their median is 69 , find the value of x.

59,62,65,x,x,+2,72,85,94​

Answers

Answered by ShírIey
100

Given Data is: 59, 62, 65, x, x + 2, 72, 85 and 94.

Need to find: The value of x.

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀⠀

⠀⠀⠀

\underline{\bf{\dag} \:\mathfrak{As\;we\;know\: that\: :}}

⠀⠀⠀

The formula of Median for even terms is given by :

\star\;\boxed{\sf{\pink{Median = \dfrac{\bigg(\dfrac{n}{2} \bigg)^{th} \; observation + \bigg(\dfrac{n}{2} + 1\bigg)^{th} \; observation}{2}}}}

  • Here, nth term is even that is 8 and Median is 69.

Now,

:\implies\sf Median = \dfrac{\dfrac{\cancel{\;8}}{\cancel{\;2}} \; observation + \bigg(\dfrac{8}{2}^{th} + 1 \bigg)^{th} \; observation}{2} \\\\\\:\implies\sf 69 = \dfrac{4^{th} \; observation + 5^{th}\; observation}{2}  \\\\\\:\implies\sf  69 = \dfrac{x + x + 2}{2} \\\\\\:\implies\sf 138 = 2x + 2 \\\\\\:\implies\sf  2x = 138 - 2 \\\\\\:\implies\sf  2x = 136 \\\\\\:\implies\sf x = \cancel\dfrac{136}{2} \\\\\\:\implies{\underline{\boxed{\frak{\pink{x = 68}}}}}\;\bigstar

\therefore{\underline{\sf{Hence, \; the \; required \; value \; of \; x \; is \; \bf{ 68}.}}}

Answered by Anonymous
71

Given:

  • The median of the data 59, 62 ,65 ,x ,x+2 ,72 ,85,94 is 69

\\ \\

To Find:

  • the value of x

\\ \\

Solution:

\\ \\

\pink{\underline{ \mathfrak{As\: We \:know \:that:}}}

 {\longrightarrow} \sf  \orange{\: median \: of \:a \: data =  \frac{ \frac{n}{2}th \: term + ( \frac{n}{2} + 1)th \: term }{2}   \: \bigstar}

\\ \\

◐ here the variable n is represented by the number of terms in a data.

➺ here, we have 8 terms in the data

◉ so, n = 8

\\ \\

Now, let's substitute the value of 8 in the place of n

\\ \\

{ : \implies} \sf \: median \:  =  \:  \frac{ \frac{n}{2}th \: term +  \frac{n}{2 }  + 1th \: term }{2}  \\  \\  \\  \\ { : \implies} \sf 69 \:  =   \: \frac{ \frac{8}{2}th \: term +  \frac{8}{2}  + 1 th \: term }{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\  \\ { : \implies} \sf  \: 69 \:  =  \frac{4th \: term + 5th \: term}{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\\ \\

❍ Now, let's substitute the values of the terms

\\ \\

{ \implies} \sf  \: 69 =  \frac{x + x + 2}{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\  \\ { : \implies} \sf  \: 69 =  \frac{2x + 2}{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\  \\ { : \implies} \sf  2x + 2 = 69 \times 2 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\  \\ { : \implies} \sf  \: 2x + 2 = 138 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\  \\ { : \implies} \sf  \: 2x = 136 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\  \\ { : \implies} \sf  \: x =  \cancel \frac{136}{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \:  \:  \:  \:  \\  \\  \\  \\ { : \implies} \sf \: x=\pink{ \underline{ \boxed{68 \bigstar}}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:\:

\\ \\

★ hence the Required value is 68

Similar questions