Math, asked by ADBOYZ1605007, 1 month ago

following:
Simplify the following: -
 \sqrt{45} - \sqrt[3]{20} +  \sqrt[4]{5}

Answers

Answered by Sujit14375
0

Step-by-step explanation:

Click on the image to see the Answer

 \sqrt{45 -}  -  \sqrt[3]{20}  + 4 \sqrt{5}

 =  \sqrt{3 \times 3 \times 5}  - 3 \sqrt{2 \times 2 \times 5}  +  \sqrt[4]{5}

 =  \sqrt[3]{5}  -   \sqrt[ - 6]{5}  +  \sqrt[4]{5}

 \sqrt[7]{5}  -  \sqrt[6]{5}

 \sqrt{5}

Attachments:
Answered by Salmonpanna2022
2

Step-by-step explanation:

 \bf \underline{Solution-} \\

 \sf{ \sqrt{45} - 3 \sqrt{20}  + 4 \sqrt{5}  } \\

 \sf{ =  \sqrt{9 \times 5}  - 3 \sqrt{4 \times 5} + 4 \sqrt{5}  } \\

 \sf{ = 3 \sqrt{5}  - 3 \times 2 \sqrt{5} + 4 \sqrt{5}  } \\

 \sf{ = (3 - 6 + 4) \sqrt{5} } \\

 \sf{ =  \sqrt{5} } \:  \:  \:  \:  \bf{Ans.} \\

Similar questions