Math, asked by Dhruvvala26, 1 year ago

For 20 points
If
\tan( \alpha ) = \frac{x \sin( \beta ) }{1 - x \cos( \beta ) }

and

\tan \beta = \frac{y \sin \alpha }{1 - y \cos \alpha }

Then
\frac{x}{y} =

?​​

Answers

Answered by MaheswariS
8

Answer:

\frac{x}{y}=\frac{sin\alpha}{sin\beta}

Step-by-step explanation:

Formula used:

sin(A+B)=sinA\:cosB+cosA\:sinB

Given:

tan\alpha=\frac{x\:sin\beta}{1-x\:cos\beta}........(1) and

tan\beta=\frac{y\:sin\alpha}{1-y\:cos\alpha} and

(1)\implies\:tan\alpha-x\:tan\alpha\:cos\beta=x\:sin\beta

\implies\:tan\alpha=x\:tan\alpha\:cos\beta+x\:sin\beta

\implies\:tan\alpha=x(tan\alpha\:cos\beta+sin\beta)

\implies\:tan\alpha=x(\frac{sin\alpha}{cos\alpha}cos\beta+sin\beta)

\implies\:tan\alpha=x(\frac{sin\alpha\:cos\beta+cos\alpha\:sin\beta}{cos\alpha})

\implies\:\frac{sin\alpha}{cos\alpha}=x(\frac{sin(\alpha+\beta)}{cos\alpha})

\implies\:sin\alpha=x\:sin(\alpha+\beta)

\implies\:x=\frac{sin\alpha}{sin(\alpha+\beta)}

similarly

(2)\implies\:y=\frac{sin\beta}{sin(\alpha+\beta)}

Now,

\frac{x}{y}

=\frac{\frac{sin\alpha}{sin(\alpha+\beta)}}{\frac{sin\beta}{sin(\alpha+\beta)}}

=\frac{sin\alpha}{sin\beta}

\implies\:\frac{x}{y}=\frac{sin\alpha}{sin\beta}

Answered by bandanasahoo
1

Answer:

what is the question

write it properly or answer will come error

Similar questions