For a complex number z, If Re(z) and Im(z) are the roots of x^2 7x 120
and Z+Z is one of the roots of x^2 - 10x + 160, then find Re(2) -Im(2).
Answers
Answered by
0
Let z=x+iy,x,y∈R and i=
−1
∵Re(z)=∣z−2∣
⇒x=
(x−2)
2
+y
2
⇒x
2
=(x−2)
2
+y
2
⇒x
2
=x
2
−4x+4+y
2
⇒y
2
=4(x−1)
∴z=1+t
2
+2ti, parametric form and let ω=p+iq
Similarly,ω=1+s
2
+2si
∴z−ω=(t
2
−s
2
)+2i(t−s)
⇒arg(z−ω)=
3
π
∴tan
−1
(
t+s
2
)=
3
π
⇒
t+s
2
=
3
Now, z+ω=2+t
2
+s
2
+2i(t+s)
∴Im(z+ω)=2(t+s)=
3
4
Similar questions