Chemistry, asked by ajitsingh9775, 10 months ago

For a first order reaction find the ratio of t90% to t10%

Answers

Answered by kushdiya0106
1

Answer:

here is it  pls mark as brainliest

Explanation:

ANSWER

For t  

90%

​  

 ,a  

t

​  

=  

100

10a  

0

​  

 

​  

=  

10

a  

0

​  

 

​  

 

t  

90%

​  

=  

k

1

​  

In  

a  

0

​  

/10

a−0

​  

=  

k

In10

​  

....(1)

For t  

99%

​  

, a  

t

​  

=  

100

1

​  

a−0

t  

99%

​  

=  

K

1

​  

In  

a  

0

​  

/100

a  

0

​  

 

​  

=  

k

2In10

​  

....(2)

From (1) and (2),

t  

99%

​  

=2×t  

90%

​  

=>x=2

Answered by anjali13lm
0

Answer:

The ratio of t_{90\%} to t_{10\%} is 20.

Explanation:

Given,

The reaction occurring is the first-order reaction.

The ratio of t_{90\%} to t_{10\%} =?

As we know, the integrated rate law expression for the first-order reaction is:

  • k = \frac{2.303}{t} log\frac{a}{a-x}
  • t = \frac{2.303}{k} log\frac{a}{a-x}   -------equation (1)

Here,

  • k = The rate constant
  • a = Initial concentration
  • x = The amount reacted
  • a-x = Final concentration

Case 1) For t_{90\%} , x = 90\%

Let the initial concentration, a = 100\%

Therefore, a-x = 100\% - 90\% = 10\%

After putting the values in equation (1), we get:

  • t_{90\%}  = \frac{2.303}{k} log\frac{100}{10}
  • t_{90\%}  = \frac{2.303}{k} log 10
  • t_{90\%}  = \frac{2.303}{k}               ( log 10 = 1 )

 

Case 2) For t_{10\%}, x = 10\%

Let the initial concentration, a = 100\%

Therefore, a-x = 100\% - 10\% = 90\%

After putting the values in equation (1), we get:

  • t_{10\%}  = \frac{2.303}{k} log\frac{100}{90}
  • t_{10\%}  = \frac{2.303}{k} log \frac{10}{9}
  • t_{10\%}  = \frac{2.303}{k} (log 10 - log 9)             ( log\frac{x}{y} = log x - log y )
  • t_{10\%}  = \frac{2.303}{k} (1 - 0.95)                    ( log 10 = 1 , log 9 = 0.95 )
  • t_{10\%}  = \frac{2.303}{k}\times 0.05

Now, the ratio of t_{90\%} to t_{10\%} is:

  • \frac{t_{90\%}}{t_{10\%}} = \frac{\frac{2.303}{k} }{\frac{2.303\times 0.05}{k} }
  • \frac{t_{90\%}}{t_{10\%}} = \frac{1}{0.05}
  • \frac{t_{90\%}}{t_{10\%}} = 20

Hence, the ratio of t_{90\%} to t_{10\%} is 20.

Similar questions