Chemistry, asked by candice1166, 3 months ago


For a first order reaction, the time taken to reduce
the initial concentration to a factor of 1/4 is 10 minute
If the reduction in concentration is carried out to a
factor of 1/16

then time required will be

(1) 10 minutes
(2) 20 minutes
(3) 40 minutes
(4) 60 minutes​

Answers

Answered by Asterinn
49

Let initial Concentration be x.

Concentration after 10 minutes = (1/4 ) x

We know that , for first order reaction :-

 \boxed{ \rm \large \: k \times t = ln \dfrac{a}{b} }

Where :- k = rate constant

t = time

a = initial Concentration

b = final concentration

\rm  \longrightarrow k \times t = ln \dfrac{a}{b} \\  \\ \rm  \longrightarrow k \times 10 = ln \dfrac{x}{ (\frac{1}{4} )x}\\  \\ \rm  \longrightarrow k \times 10 = ln \dfrac{4x}{ x}\\  \\ \rm  \longrightarrow k \times 10 = ln \dfrac{4}{ 1}\\  \\ \rm  \longrightarrow k \times 10 = ln 4\\  \\ \rm  \longrightarrow k \times 10 = ln  {2}^{2} \\  \\ \rm  \longrightarrow k \times 10 =2 ln  {2}\\  \\ \rm  \longrightarrow k \times 5  = ln  {2}\\  \\ \rm  \longrightarrow k   =  \frac{ln  {2}}{5}

Again , let initial Concentration be y

Concentration after time t = (1/16)y

We have to find out time (t).

 \rm \longrightarrow \:  \dfrac{ln2}{5}  \times t = ln \dfrac{y}{ (\frac{1}{16})y } \\  \\  \\  \rm \longrightarrow \:  \dfrac{ln2}{5}  \times t = ln \dfrac{16}{1 }\\  \\  \\  \rm \longrightarrow \:  \dfrac{ln2}{5}  \times t = ln   \: {2}^{4} \\  \\  \\  \rm \longrightarrow \:  \dfrac{ln2}{5}  \times t =4 \:  ln   \: {2}\\  \\  \\  \rm \longrightarrow \:   t =4  \times 5\\  \\  \\  \rm \longrightarrow \:   t =20 \: min

Answer :

Option (2) 20 minutes is correct

Answered by gideonwarrior08
20

Answer:

pls mark me brainliest

Explanation:

Hope it helps you

Attachments:
Similar questions