Physics, asked by hansarianeil6740, 1 year ago

For a free electron gas the magnitude of phase velocitt and group velocity are such that

Answers

Answered by Anonymous
1

Answer:

  The wave variables are the angular frequency ω and the wavenumber k. Both are related to the frequency ν and the wavelength λ as follows:  

ω = 2πν,                 k = 2π/λ.                                                                (0)  

  If we now state the “Planck- de Broglie hypothesis”, which associates to each quantum particle an angular frequency, the relation  of the latter to the total energy E of the particle is  

E = ħω.                                                                                     (1)  

On the other hand, the momentum p of this particle is  

p = ħk.                                                                                   (2)  

  The wave associated to the above particle has a “phase velocity”  

vf ≡ λ/T = ω/k,                                                                          (3)  

where T is the period of the corresponding oscillation. Substituting eqs.(1-2) into eq.(3), we obtain  

vf = E/p.                                                                                  (4)  

The wave also has a “group velocity”, defined as  

vg ≡ dω/dk.                                                                                 (5)  

  The essence of the wave-particle duality is about  relating the speed v of the particle with the phase and group velocities of the associated wave. At least for vg , we see that we cannot do this unless we know the functional relation between ω and k (called “dispersion relation”). This relation is obtained from the dynamical expression of the energy E; to this we now turn.  

  A particle’s particlelike properties are its energy E and its momentum p. We will consider two cases.  

1) In general, we may take the particle to be a relativistic one, and write  

E = mc2/√[1 –(v/c)2] ,                                              (6 a)  

p = mv/√[1 – (v/c)2].                                               (6b)  

As a consequence of Eqs.(6 a-b), we have        

E2 = (cp)2 + (mc2)2 .                                                                            (7)  

2) As a special case when β ≡ v/c < < 1, we may write  

E = mc2 + [p2/(2m)] ≈ mc2 ,                                                                 (8 a)  

p  = mv.                                                                                              (8b)  

  Having thus separated---as far as possible---particlelike from wavelike properties, we proceed to combine them.  

1) Relativistic ( R) particle.    

  In order to compute the phase velocity from Eq.(4), let us divide Eq.(7) by p2 ; employing Eq.(6b), we find  

vf 2 = (E/p)2 = (c2/v)2 ,    

from which  

vf = c2/v > c.                                                                              (9)  

Substituting Eqs.(1-2) into Eq.(7), we have  

(ħω)2 = (ħck)2 + (mc2)2 .                                                                           (10)  

Eq.(10) is the dispersion relation  for the “wave-particle”. Differentiating Eq.(10) with respect to k, we obtain        

vg = c2k/ω = c2/vf = v.                                                                        (11)  

From Eq.(11) we have  

vfvg = c2 ;                                                                                                 (11’)  

that is, c is the geometric mean of vf and vg . Since, from Eq.(9), vf > c, we conclude that vg < c; this suggests that vg is a possible speed for the particle-wave. Indeed, Eq.(11) shows that vg is equal to the speed of the particle.  

  We have as a subcase that of a photon, with zero mass, whose energy is therefore  

E = cp.                                                                                             (12)  

Effecting the customary substitutions, we find the dispersion relation  

ω = ck.                                                                                                     (13)  

From Eq.(13) we conclude that the phase and group velocities of a photon are equal:  

vf = vg = c.                                                                                    (14)

2) Non-relativistic (NR) particle.    

  In this case, β ≡ v/c < < 1. Employing again Eq.(4), and substituting Eq.(8 a) into it---not yet effecting the last approximation---,we get (with an obvious notation for phase velocities)  

vfNR = E/p = (c2/v) + [p/(2m)] = vfR + (v/2),                                            (15)  

where in the last equality we have used Eq.(8b). we see that the non-relativistic phase velocity vfNR is even greater than the relativistic one, vfR .  

  Substituting now Eqs.(1-2) into Eq.(8 a) without the last approximation,  we obtain the dispersion relation  

ħω = mc2 + [(ħk)2/(2m)];                                                                        (16)  

differentiating Eq.(16) with respect to k:  

vg ≡ dω/dk = ħk/m = p/m = v.                                                                (17)  

Eq.(17) tells us that the group velocity coincides with the speed of the particle.  

  Approximating now E ≈ mc2, we find  

vf = E/p = c2/v > c.                                                                      (9’)  

Eq.(9’) gives the same result as Eq.(9) Therefore, Eqs.(17-18) lead again to Eq.(11’).          

Employing Eq.(1), and solving for ω, the dispersion is here  

ω = mc2/ħ = const.                                                                       (18)  

Eq.(18) tells us that, in this case, a classical free particle corresponds to a monochromatic wave. Differentiating Eq.(18), we have  

vg = 0.                                                                                     (19)  

Eq.(19) looks surprising, but it only means that in this case there is no “group” or “packet” of waves.  

Similar questions