For a function y=xrootx find the value of x for which the rate of change of y with respect to x is 6
Answers
Answered by
0
Step-by-step explanation:
dy
)
x=6
=
2
3
6
Step-by-step explanation:
Formula used:
\frac{d(x^n)}{dx}=n\:x^{n-1}
dx
d(x
n
)
=nx
n−1
Given:
y=x\sqrt{x}y=x
x
y=x^{\frac{3}{2}}y=x
2
3
Differentiate with respect to 'x'
\frac{dy}{dx}=\frac{3}{2}x^{\frac{1}{2}}
dx
dy
=
2
3
x
2
1
\frac{dy}{dx}=\frac{3}{2}x^{\frac{1}{2}}
dx
dy
=
2
3
x
2
1
\frac{dy}{dx}=\frac{3}{2}\sqrt{x}
dx
dy
=
2
3
x
(\frac{dy}{dx})_{x=6}=\frac{3}{2}\sqrt{6}(
dx
dy
)
x=6
=
2
3
6
Similar questions