For a G.P if t4=24 t9= 768 find s8
Answers
Answered by
19
# Answer- S8=765
# Explaination-
# Given-
Considering the geometric progression,
a=?
r=?
t4=24
t9=768
# Solution-
tn=a.r^(n-1)
t4=a.r^3=24
t9=a.r^8=768
t9/t4=768/24=r^8/r^3
r^5=32
r=2
But we know,
t4=a.2^3=24
a=3
Now, Sn=a(1-r^n)/(1-r)
For S8,
S8=3(1-2^8)/(1-2)
S8=3×255
S8=765.
Hope this helps...
# Explaination-
# Given-
Considering the geometric progression,
a=?
r=?
t4=24
t9=768
# Solution-
tn=a.r^(n-1)
t4=a.r^3=24
t9=a.r^8=768
t9/t4=768/24=r^8/r^3
r^5=32
r=2
But we know,
t4=a.2^3=24
a=3
Now, Sn=a(1-r^n)/(1-r)
For S8,
S8=3(1-2^8)/(1-2)
S8=3×255
S8=765.
Hope this helps...
Answered by
3
Answer:
hope it will help you
S8=765
Attachments:
Similar questions