Math, asked by moreom189, 3 months ago

For a G.P, r= 2 and S5 = 31, then first term a =​

Answers

Answered by mathdude500
0

\begin{gathered}\begin{gathered}\bf \:Given-\begin{cases} &\sf{S_5 \: of \: G.P = 31} \\ &\sf{common \: ratio \: (r) = 2} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf \: To \: Find - \begin{cases} &\sf{first \: term \: of \: G.P \: (a)}\end{cases}\end{gathered}\end{gathered}

\large\underline{\sf{Solution-}}

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ Sum of n terms of an geometric sequence is,

 \underline{ \boxed{ \bf \: S_n \:  =  \: a\bigg( \dfrac{ {r}^{n} - 1 }{r - 1} \bigg)}}

Wʜᴇʀᴇ,

  • Sₙ is the sum of first n terms.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • r is the common ratio.

Tʜᴜs,

↝ Sum of 5 terms is given by

\rm :\longmapsto\:S_5 = a\bigg(\dfrac{ {r}^{5}  - 1}{r - 1}  \bigg)

↝ It is given that Sum of first 5 terms is 31 and common ratio is 2,

Tʜᴜs,

\rm :\longmapsto\:31 = a\bigg(\dfrac{ {2}^{5}  - 1}{2 - 1}  \bigg)

\rm :\longmapsto\:31 = a(32 - 1)

\rm :\longmapsto\:31 = 31a

\bf\implies \:a \:  =  \: 1

\overbrace{ \underline { \boxed { \bf \therefore \: The \: first \: term \: of \: G.P \: is \: 1}}}

Additional Information :-

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ nᵗʰ term of an Geometric sequence is,

 \underline{ \boxed{ \bf \: a_n =  {ar}^{n - 1}}}

Wʜᴇʀᴇ,

  • aₙ is the nᵗʰ term.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • r is the common ratio.

Similar questions