Math, asked by vikassingh12323, 11 months ago

for a G.P S5=1023 ,r=4 find a​

Answers

Answered by ranikumari4878
45

Answer:

a=3

Step-by-step explanation:

Given'

summatin of first 5 G.P series, S5=1023

and common ratio, r=4

  • summation of G.P terms having n number of terms =\frac{a\times(r^n -1)}{r-1}

hence, summation of first five terms = \frac{a\times(r^5 -1)}{r-1}

                                                   1023  = \frac{a\times(4^5 -1)}{4-1}

                                                      a=\frac{1023\times 3}{4^5 -1}

                                                       a=3  

Answered by fenilpatel3129
3

summatin of first 5 G.P series, S5=1023

and common ratio, r=4

summation of G.P terms having n number of terms =\frac{a\times(r^n -1)}{r-1}

r−1

a×(r

n

−1)

hence, summation of first five terms = \frac{a\times(r^5 -1)}{r-1}

r−1

a×(r

5

−1)

Similar questions