For a gaseous phase reaction
2A + B2 → 2AB the following rate data was obtained at 300K
Answers
Answer:
Rate of reaction = K[A]m[B]n
Where m and n are order with respect to A and B
Rate of disappearance of B2 = k[A]m[B]n
r1 =1.8*10^(-3) = k[0.015]^m[0.15]^n
r2=1.08*10^(-2) =k[0.09]^m[0.15]^n
r3=5.4*10^(-3) =k[0.15]^m[0.45]^n
dividing r1/r2
(1.8*10^(-3)/1.08*10^(-2)=k[0.015/0.09]m
thus we get m=1
similarly dividing r1/r3 we get n=1
Rate of disappearance of B2 =k[0.015]^1[0.15]^1
1.8*10-3=k[0.015]^1[0.15]^1
Rate constant (k) = 0.8 litre mol^-1 time^-1
rate of formation of AB
1/2 d[AB]/dt =-d[B2]/dt
d[AB]/dt = 2*(-d[B2]/dt)
=2*k[A]^1[B]^1
=2*0.8*(0.02)^1*(0.04)^1
= 1.28*10^(-3)
Hence rate of formation of [AB] =1.28*10^(-3 )
Answer:
0.8 L/mol sec
Explanation:
rate =K[A]^m[B]^n
rate disappearance of B2=K[A]m[B]n
R1= 1.8×10^-3=K[0.015]m[0.15]n
R2=1.08×10^-2=K[0.09]m[0.15]n
R3=5.4×10^-3=K[0.015]m[0.45]n
divide R1by R2
=1.8×10^-3/1.08×10^-2=[0.015/0.09]m
m= 1
similarly R2 divide by R3
we get n=1
now put these values in equation
B2=K[0.015]^1[0.15]^1
K=1.8×10^-3/0.015×0.15
K= 1.8×10^-3/2.25×10^-3
K=0.8 L/mol sec