For a gene present on human chromosome 4, the maximum number of alleles that may be detected by sequencing the genome of 5 males and 10 females is
Answers
Explanation:
Our genetic information is stored in 23 pairs of chromosomes that vary widely in size and shape. Chromosome 1 is the largest and is over three times bigger than chromosome 22. The 23rd pair of chromosomes are two special chromosomes, X and Y, that determine our sex. Females have a pair of X chromosomes (46, XX), whereas males have one X and one Y chromosomes (46, XY). Chromosomes are made of DNA, and genes are special units of chromosomal DNA. Each chromosome is a very long molecule, so it needs to be wrapped tightly around proteins for efficient packaging.
Near the center of each chromosome is its centromere, a narrow region that divides the chromosome into a long arm (q) and a short arm (p). We can further divide the chromosomes using special stains that produce stripes known as a banding pattern. Each chromosome has a distinct banding pattern, and each band is numbered to help identify a particular region of a chromosome. This method of mapping a gene to a particular band of the chromosome is called cytogenetic mapping. For example, the hemoglobin beta gene (HBB) is found on chromosome 11p15.4. This means that the HBB gene lies on the short arm (p) of chromosome 11 and is found at the band labeled 15.4.
With the advent of new techniques in DNA analysis, we are able to look at the chromosome in much greater detail. Whereas cytogenetic mapping gives a bird's eye view of the chromosome, more modern methods show DNA at a much higher resolution. The Human Genome Project aims to identify and sequence the ~30,000 genes in human DNA.