Math, asked by kinjalpopat05, 6 months ago

For a given AP the first term is 5 and the 19th term is 95. Find the sum of its 19 terms.​

Answers

Answered by Ataraxia
6

GIVEN :-

  • \sf 1^{st} \ term = 5
  • \sf 19^{th} \ term = 95

TO FIND :-

  • Sum of 19 terms of the AP.

SOLUTION :-

We know that,

\bf a_n = a+ (n-1)d

First term = 5

\longrightarrow \sf a = 5

\bullet \sf \ a_{19}= 95

\longrightarrow \sf a+(19-1)d = 95 \\\\\longrightarrow a+18 d = 95   \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \  .............(1)

Substitute the value of a in equation(1),

\longrightarrow \sf 5+18d= 95 \\\\\longrightarrow 18d = 95-5 \\\\\longrightarrow 18d = 90 \\\\\longrightarrow \bf d = 1

\boxed{\bf Sum \ of \ first \ n \ terms = \dfrac{n}{2}\times [ \ 2a+(n-1)d  \ ]}

 \bullet \sf  \  Sum \ of \ first \ 19 \ terms =  \dfrac{19}{2} \times [ \ (2\times 5)+(19-1)\times 5 \ ]

                                     = \sf \dfrac{19}{2} \times [ \ 10+ 18\times 5  \ ]

                                    = \sf \dfrac{19}{2} \times( 10+90) \\\\= \dfrac{19}{2}\times 100 \\\\= \bf 950

Similar questions