for a prism having angle 60 and refractive index is √2 the minimum deviation
Answers
Answered by
9
μ=sin((σ+A)/2) ÷ sin(A/2) .............(1)
where→σ=angle of minimum deviation
A=angle of prism
given that : σ= To calculate
μ=√2
A=60
Since we need to find σ,we need to rearange the terms in (1) like this:
Sin(A/2)×μ=Sin((σ+A)/2))
substituting the value of A and μ we get
Sin(60/2)×√2=sin((σ+60)/2)
(1/2)×√2=sin((σ+60)/2) [sin30°=1/2]
1/√2=sin((σ+60)/2)
sin⁻¹(1/√2)=σ/2 + 30 [shifting "sin" to LHS]
45=σ/2+30 [sin⁻¹(1/√2)=45°]
15=σ/2
30=σ
Therefore the angle of minimum deviation is at 30°
where→σ=angle of minimum deviation
A=angle of prism
given that : σ= To calculate
μ=√2
A=60
Since we need to find σ,we need to rearange the terms in (1) like this:
Sin(A/2)×μ=Sin((σ+A)/2))
substituting the value of A and μ we get
Sin(60/2)×√2=sin((σ+60)/2)
(1/2)×√2=sin((σ+60)/2) [sin30°=1/2]
1/√2=sin((σ+60)/2)
sin⁻¹(1/√2)=σ/2 + 30 [shifting "sin" to LHS]
45=σ/2+30 [sin⁻¹(1/√2)=45°]
15=σ/2
30=σ
Therefore the angle of minimum deviation is at 30°
vishagh:
Hope it helped..111 :)
Similar questions