Chemistry, asked by Anonymous, 1 month ago

♣For a reaction 2H2O2→2H2O + O2 if rate of formation of O2 is 3.2×10^-3 kg/min then what will be rate of disappearance of H2O2 1)in mol/min
2)in g/sec 
3)in kg/min​

Answers

Answered by ajr111
3

Answer:

1) 1.88 × 10⁻¹ mol/min

2) 1.07 × 10⁻¹ g/sec

3) 6.4 × 10⁻³ kg/min

Explanation:

Hi dear!

The given reaction is,

2H_2O_2 \longrightarrow 2H_2O + O_2

For this reaction , we know that

\boxed {-\dfrac{1}{2} \bigg(\dfrac{d[H_2O_2]}{dt} \bigg) = + \dfrac{1}{2} \bigg(\dfrac{d[H_2O]}{dt} \bigg) = +  \bigg(\dfrac{d[O_2]}{dt} \bigg)}

[-ve and +ve signs are only to describe the completion and formation]

\text{Given that, rate of formation of $O_2$ is $3.2 \times 10^{-3}$ that is }  \\\\ \bigg(\dfrac{d[O_2]}{dt} \bigg) = 3.2 \times 10^{-3} \ kg/min

So, the rate of disappearance of H₂O₂ is  \bigg(\dfrac{d[H_2O_2]}{dt} \bigg)

So, from the above relation,

\boxed{\bigg(\dfrac{d[H_2O_2]}{dt} \bigg) = 2\bigg(\dfrac{d[O_2]}{dt} \bigg)}

: \longmapsto \bigg(\dfrac{d[H_2O_2]}{dt} \bigg) = 2 \times 3.2 \times 10^{-3} \text{ kg/min}

: \longmapsto \bigg(\dfrac{d[H_2O_2]}{dt} \bigg) = \underline{ 6.4 \times 10^{-3} \text{ kg/min}}

This is the 3rd answer.

----------------------------------------------------

Now,

So, \ 6.4 \times 10^{-3}\  kg/min = 6.4 \times 10^{-3} \times \dfrac{ 10 ^ 3g}{60 sec}  

: \longmapsto 6.4 \times 10^{-3} \times \dfrac{10^3 g}{ 60 sec} = 1.07 \times 10^{-1} \ g/sec

This is the 2nd answer

-----------------------------------------------------

Now,

Mole = \dfrac{\text{Weight of substance in gms}}{\text{Molecular weight in gms}}

6.4 \times 10^{-3} \ kg/min  = 6.4 \times 10^{-3}  \times \dfrac{10^3 g}{34g . min}  \\\\: \longmapsto 1.88 \times 10^{-1} \ mol/min

[Molecular weight of H₂O₂ is 34]

this is the 1st answer

Hope it helps!!

Similar questions