Physics, asked by ap788963, 1 day ago

For a satellite to be in a circular orbit 780 km above the surface of the earth, what is the period of the orbit (in hours)? ​

Answers

Answered by saiaharannayak
1

I will take 2 hours....

I will take 2 hours....

Answered by NehaKari
4

Given :

Height of the orbit from the surface of the earth (h) = 780 Km

To Find :

Time period of the orbit

Solution :

If the time period of the satellite is T, the distance covered in time T by the satellite = the circumference of the orbit = 2\pir

      ∴ T = \frac{2\pi r}{v_{0} }  ( where V_{0} = orbital velocity)

We know, Orbital velocity ( V_{0}) = \sqrt{\frac{GM}{(R+h)} } ----------> equation 1

as g = \frac{GM}{R^{2} }

(g = acceleration due to gravity; M = mass of earth; r = radius of the earth; G= Gravitational constant)

or, GM = gR^{2}

Putting this value of GM in equation 1

     V_{0} = \sqrt{\frac{gR^{2} }{r} }  (where r = radius of orbit = R+h)

or,  V_{0} = R\sqrt{\frac{g}{r} }

Now, Time period of revolution (T) = \frac{2\pi r}{v_{0} }

                                                          =  2\pi r.\frac{1}{R}  \sqrt{\frac{r}{g} }

                                                          = \frac{2\pi }{R} \sqrt{\frac{r^{3} }{g} }

                                                          = \frac{2 * 3.14}{6.4 * 10^{6} } \sqrt{\frac{(6.4 * 10^{6} +0.78 * 10^{6} )^{3} }{9.8} }

                                                          = 0.98 x 10^{-6} \sqrt{ \frac{(7.18 *10^{6} )^{3} }{9.8} }

                                                          = 0.98 x  10^{-6} x \sqrt{\frac{370.15 * 10^{18} }{9.8}}

                                                          = 0.98 x 6.146 x 10^{3}

                                                         = 7126 sec = 2 hours (approx.)

∴ The period of revolution at a height of 780 km from the earth's suface is 2 hours (approximately).

                                                                 

                                         

Similar questions