Math, asked by arifamjad87, 7 months ago

For a t distribution with 16 degrees of freedom, find the area, or probability, in each region. a. To the right of 2.120 b. To the left of 1.337 c. To the left of -1.746 d. To the right of 2.583 e. Between -2.120 and 2.120 f. Between -1.746 and 1.746

Answers

Answered by prabhas24480
11

\huge{\underline{\bf\red{Questi {\mathbb{O}} n} :}}

\sf Fine \: the \: value \: of \: 'a' \: for \: which \\  \sf the \: system \: of \: linear \: equations \\ x + ay = 2 \: { \sf{and}} \: 2x - 5y = 3 \\ \sf has \: no \: solution.

\huge{\underline{\: \bf\green{Answ {\mathbb{E}} r}\ \: :}}

CASE ( i ) :-

 \boxed{\qquad \qquad a =  -  \frac{5}{2} \qquad \qquad }

CASE ( ii ) :-

 \boxed{a =  \bigg\{ x :x \in {\mathbb{R}},x \neq -  \frac{10}{3} \bigg\}}

\huge{\underline{\bf\blue{Soluti {\mathbb{O}} n}\ :}}

The given system of linear equations is of the form :—

a_1 x + b_1 y + c_1 = 0

a_2 x + b_2 y + c_2 = 0

where,

a_1 = 1, \ b_1 = a, \ c_1 = -2

a_2 = 2, \ b_2 = -5, \ c_2 = -3

Now,

 \because the given system of linear equations has no solution.

 \therefore \boxed{ \dfrac{a_1}{a_2} = \dfrac{b_1}{b_2} \neq \dfrac{c_1}{c_2} }

CASE ( i ) :

\begin{aligned} \\ \qquad \ \frac{a_{1}}{a_{2}} & = \frac{b_{1}}{b_{2}}  \\  \\ \implies\frac{1}{2} & =  \frac{a}{ - 5} \\  \\  \implies a  & =  -  \frac{5}{2}  & & & & & & & \end{aligned}

CASE ( ii ) :

\begin{aligned} \\ \qquad \ \frac{b_{1}}{b_{2}} & \neq \frac{c_{1}}{c_{2}}  \\  \\ \implies\frac{a}{ - 5} & \neq \frac{ - 2}{ - 3} \\  \\  \implies \quad a  &  \neq \frac{ - 10}{3}  & & & & & & & \end{aligned}

\red{\rule{5.5cm}{0.02cm}}

\purple{\rule{7.5cm}{0.02cm}}

\Large{ \mid {\underline{\underline{\bf\green{BrainLiest \ AnswEr}}}} \mid }

Similar questions