Physics, asked by baapjii14, 1 year ago

For a uniformaly acceleration body with initial and final velocity as Um/s and Vm/s find the average velocity ​

Answers

Answered by nirman95
48

Answer:

Given:

Body is uniformly accelerated.

Initial velocity = u

Final Velocity = v

To find:

Average Velocity

Concept:

Average Velocity is the ratio of total displacement to the total time.

V avg. = (displacement)/(time)

Calculation:

We will calculate displacement and time separately.

Displacement:

v² = u² + 2as

=> 2as = v² - u²

=> s = (v² - u²)/2as......(1)

Time:

v = u + at

=> at = v - u

=> t = (v - u)/a.........(2)

Hence the average Velocity

V avg. = (1)/(2)

=> V avg. = [(v² - u²)/2a]/[(v - u)/a]

=> V avg. = {(v + u)(v - u)}/{2(v - u)}

=> V avg. =( v + u )/2

So final answer is

v \: avg. =  \frac{(u + v)}{2}  \\

Answered by Anonymous
34

\LARGE{\underline{\underline{\red{\mathfrak{Answer :}}}}}

 \large \tt Given \begin{cases} \sf{Intial \: velocity \: = \: u \: ms^{-1}}  \\  \sf{Final \: velocity \: = \: v \: ms^{-1}}  \end{cases}

Use equation,

\Large \star {\underline{\boxed{\blue{\sf{v^2 \: - \: u^2 \: = \: 2as}}}}}

We have to find Displacement here,

⇒v² - u² = 2as

⇒s = v² - u²/2a

\Large \leadsto {\boxed{\sf{s \: = \: \frac{v^2 \: - \: u^2}{2a}}}}

And we know,

\Large \star {\underline{\boxed{\blue{\sf{a \: = \: \frac{v \: - \: u}{t}}}}}}

Here we have to find time

⇒t = v - u/t

\Large \leadsto {\boxed{\sf{t \: = \: \frac{v \: - \: u}{t}}}}

Now, we have formula for average velocity,

\Large \star {\underline{\boxed{\blue{\sf{V_{avg} \: = \: \frac{Displacement}{time}}}}}}

Put values

\large \rightarrow  \displaystyle\sf{v_{avg} \: = \:  \frac{ {v}^{2} \:  -  \:  {u}^{2}  }{ \dfrac{2 \cancel{a}}{  \dfrac{v \:  -  \: u}{ \cancel{a}}  } } }  \\  \\  \rightarrow  \large \sf{ v_{avg} \: = \: \frac{ \cancel{(v \:  -  \: u)}(v \:  +  \: u)}{ \dfrac{2}{ \cancel{v   \: - \: u } }} } \\  \\  \rightarrow \large \sf{v_{avg} \:  =  \:  \dfrac{v \:  +  \: u}{2}  }

\LARGE \implies {\boxed{\boxed{\green{\sf{v_{avg} \: = \: \dfrac{v \: + \: u}{2}}}}}}

Similar questions