Math, asked by akshar45, 3 months ago

For a^x = (x + y + z)^y, a^y = (x + y + z)^z, a^z = (x + y + z)^x, then find the values of x,y and z. Where a > 0 and a ¹ 1.​

Answers

Answered by poovarasan09
0

Answer:

Answer

Given,

A=

0

x

x

2y

y

−y

z

−z

z

A

=

0

2y

z

x

y

−z

x

−y

z

I=

1

0

0

0

1

0

0

0

1

Now, A

A=I

Putting values

0

2y

z

x

y

−z

x

−y

z

0

x

x

2y

y

−y

z

−z

z

1

0

0

0

1

0

0

0

1

0(0)+x(x)+x(x)

2y(0)+y(x)−y(x)

z(0)−z(x)+z(x)

0(2y)+x(y)+x(−y)

2y(2y)+y(y)−y(−y)

z(2y)−z(y)+z(−y)

0(z)+x(−z)+x(z)

2y(z)+y(−z)−y(z)

z(z)−z(−z)+z(z)

=

1

0

0

0

1

0

0

0

1

0+x

2

+x

2

0+xy−xy

0−xz+xz

0+xy−xy

4y

2

+y

2

+y

2

2zy−zy−zy

0−xz+xz

2zy−zy−zy

z

2

+z

2

+z

2

=

1

0

0

0

1

0

0

0

1

2x

2

0

0

0

6y

2

0

0

0

3z

2

=

1

0

0

0

1

0

0

0

1

Since matrices are equal,

corresponding elements are equal,

2x

2

=1

x

2

=

2

1

x=±

2

1

x=±

2

1

6y

2

=1

y

2

=

6

1

y=±

6

1

y=±

6

1

3z

2

=1

z

2

=

3

1

z=±

3

1

z=±

3

1

Thus, x=±

2

1

,y=±

6

1

,z=±

3

1

Similar questions